In this paper,some refinements of norm equalities and inequalities of combination of two orthogonal projections are established.We use certain norm inequalities for positive contraction operator to establish norm ineq...In this paper,some refinements of norm equalities and inequalities of combination of two orthogonal projections are established.We use certain norm inequalities for positive contraction operator to establish norm inequalities for combination of orthogonal projections on a Hilbert space.Furthermore,we give necessary and sufficient conditions under which the norm of the above combination of o`rthogonal projections attains its optimal value.展开更多
In this article, I consider projection groups on function spaces, more specifically the space of polynomials P<sub>n</sub>[x]. I will show that a very similar construct of projection operators allows us to...In this article, I consider projection groups on function spaces, more specifically the space of polynomials P<sub>n</sub>[x]. I will show that a very similar construct of projection operators allows us to project into the subspaces of P<sub>n</sub>[x] where the function h ∈P<sub>n</sub>[x] represents the closets function to f ∈P<sub>n</sub>[x] in the least square sense. I also demonstrate that we can generalise projections by constructing operators i.e. in R<sup>n+1</sup> using the metric tensor on P<sub>n</sub>[x]. This allows one to project a polynomial function onto another by mapping it to its coefficient vector in R<sup>n+1</sup>. This can be also achieved with the Kronecker Product as detailed in this paper.展开更多
Glutamatergic projection neurons generate sophisticated excitatory circuits to integrate and transmit information among different cortical areas,and between the neocortex and other regions of the brain and spinal cord...Glutamatergic projection neurons generate sophisticated excitatory circuits to integrate and transmit information among different cortical areas,and between the neocortex and other regions of the brain and spinal cord.Appropriate development of cortical projection neurons is regulated by certain essential events such as neural fate determination,proliferation,specification,differentiation,migration,survival,axonogenesis,and synaptogenesis.These processes are precisely regulated in a tempo-spatial manner by intrinsic factors,extrinsic signals,and neural activities.The generation of correct subtypes and precise connections of projection neurons is imperative not only to support the basic cortical functions(such as sensory information integration,motor coordination,and cognition)but also to prevent the onset and progression of neurodevelopmental disorders(such as intellectual disability,autism spectrum disorders,anxiety,and depression).This review mainly focuses on the recent progress of transcriptional regulations on the development and diversity of neocortical projection neurons and the clinical relevance of the failure of transcriptional modulations.展开更多
In this study,the vertical components of broadband teleseismic P wave data recorded by China Earthquake Network are used to image the rupture processes of the February 6th,2023 Turkish earthquake doublet via back proj...In this study,the vertical components of broadband teleseismic P wave data recorded by China Earthquake Network are used to image the rupture processes of the February 6th,2023 Turkish earthquake doublet via back projection analysis.Data in two frequency bands(0.5-2 Hz and 1-3 Hz)are used in the imaging processes.The results show that the rupture of the first event extends about 200 km to the northeast and about 150 km to the southwest,lasting~90 s in total.The southwestern rupture is triggered by the northeastern rupture,demonstrating a sequential bidirectional unilateral rupture pattern.The rupture of the second event extends approximately 80 km in both northeast and west directions,lasting~35 s in total and demonstrates a typical bilateral rupture feature.The cascading ruptures on both sides also reflect the occurrence of selective rupture behaviors on bifurcated faults.In addition,we observe super-shear ruptures on certain fault sections with relatively straight fault structures and sparse aftershocks.展开更多
We present an application of short-pulse laser-generated hard x rays for the diagnosis of indirectly driven double shell targets. Coneinserted double shell targets were imploded through an indirect drive approach on t...We present an application of short-pulse laser-generated hard x rays for the diagnosis of indirectly driven double shell targets. Coneinserted double shell targets were imploded through an indirect drive approach on the upgraded SG-II laser facility. Then, based on thepoint-projection hard x-ray radiography technique, time-resolved radiography of the double shell targets, including that of their near-peakcompression, were obtained. The backlighter source was created by the interactions of a high-intensity short pulsed laser with a metalmicrowire target. Images of the target near peak compression were obtained with an Au microwire. In addition, radiation hydrodynamicsimulations were performed, and the target evolution obtained agrees well with the experimental results. Using the radiographic images, arealdensities of the targets were evaluated.展开更多
The Nesterov accelerated dynamical approach serves as an essential tool for addressing convex optimization problems with accelerated convergence rates.Most previous studies in this field have primarily concentrated on...The Nesterov accelerated dynamical approach serves as an essential tool for addressing convex optimization problems with accelerated convergence rates.Most previous studies in this field have primarily concentrated on unconstrained smooth con-vex optimization problems.In this paper,on the basis of primal-dual dynamical approach,Nesterov accelerated dynamical approach,projection operator and directional gradient,we present two accelerated primal-dual projection neurodynamic approaches with time scaling to address convex optimization problems with smooth and nonsmooth objective functions subject to linear and set constraints,which consist of a second-order ODE(ordinary differential equation)or differential conclusion system for the primal variables and a first-order ODE for the dual vari-ables.By satisfying specific conditions for time scaling,we demonstrate that the proposed approaches have a faster conver-gence rate.This only requires assuming convexity of the objective function.We validate the effectiveness of our proposed two accel-erated primal-dual projection neurodynamic approaches through numerical experiments.展开更多
To investigate the influence of structural parameters on the performances and internal flow characteristics of partial flow pumps at a low specific speed of 10000 rpm,special attention was paid to the first and second...To investigate the influence of structural parameters on the performances and internal flow characteristics of partial flow pumps at a low specific speed of 10000 rpm,special attention was paid to the first and second stage impeller guide vanes.Moreover,the impeller blade outlet width,impeller inlet diameter,blade inclination angle,and number of blades were considered for orthogonal tests.Accordingly,nine groups of design solutions were formed,and then used as a basis for the execution of numerical simulations(CFD)aimed at obtaining the efficiency values and heads for each design solution group.The influence of impeller geometric parameters on the efficiency and head was explored,and the“weight”of each factor was obtained via a range analysis.Optimal structural parameters were finally chosen on the basis of the numerical simulation results,and the performances of the optimized model were verified accordingly(yet by means of CFD).Evidence is provided that the increase in the efficiency and head of the optimized model was 12.11%and 23.5 m,respectively,compared with those of the original model.展开更多
Based on numerical solutions of the time-dependent Schr ¨odinger equation, we theoretically investigate the photoelectron spectrum of hydrogen atoms ionized by a pair of ultrashort, intense, and orthogonally pola...Based on numerical solutions of the time-dependent Schr ¨odinger equation, we theoretically investigate the photoelectron spectrum of hydrogen atoms ionized by a pair of ultrashort, intense, and orthogonally polarized laser pulses with a relative time delay in a pump–probe configuration. The pump pulse resonantly excites electrons from the 1s and 2p levels,inducing Rabi oscillations. The resulting dynamically enhanced Autler–Townes(AT) splitting is observed in the photoelectron energy spectrum upon interaction with the second probe pulse. In contrast to the previous parallel-polarization scheme, the proposed orthogonal-polarization configuration enables the resolution of dynamically enhanced AT splitting over a considerably wider range of probe photon energies.展开更多
Active target time projection chambers are state-of-the-art tools in the field of low-energy nuclear physics and are particularly suitable for experiments using low-intensity radioactive ion beams or gamma rays.The Fu...Active target time projection chambers are state-of-the-art tools in the field of low-energy nuclear physics and are particularly suitable for experiments using low-intensity radioactive ion beams or gamma rays.The Fudan multi-purpose active target time projection chamber(fMeta-TPC)with 2048 channels was developed to studyα-clustering nuclei.This study focused on the photonuclear reaction with a laser Compton scattering gamma source,particularly for the decay of the highly excitedαcluster state.The design of fMeta-TPC is described in this paper.A comprehensive evaluation of its offline performance was conducted using an ultraviolet laser and ^(241)Amαsource.The results showed that the intrinsic angular resolution of the detector was within 0.30°,and the detector had an energy resolution of 6.85%for 3.0 MeVαparticles.The gain uniformity of the detector was approximately 10%(RMS/Mean),as tested by the ^(55)Fe X-ray source.展开更多
A cautious projection BFGS method is proposed for solving nonconvex unconstrained optimization problems.The global convergence of this method as well as a stronger general convergence result can be proven without a gr...A cautious projection BFGS method is proposed for solving nonconvex unconstrained optimization problems.The global convergence of this method as well as a stronger general convergence result can be proven without a gradient Lipschitz continuity assumption,which is more in line with the actual problems than the existing modified BFGS methods and the traditional BFGS method.Under some additional conditions,the method presented has a superlinear convergence rate,which can be regarded as an extension and supplement of BFGS-type methods with the projection technique.Finally,the effectiveness and application prospects of the proposed method are verified by numerical experiments.展开更多
Electron dynamics during non-sequential double ionization(NSDI) is one of the most attractive areas of research in the field of laser–atom or laser–molecule interaction. Based on the classic two-dimensional model, w...Electron dynamics during non-sequential double ionization(NSDI) is one of the most attractive areas of research in the field of laser–atom or laser–molecule interaction. Based on the classic two-dimensional model, we study the process of NSDI of argon atoms driven by a few-cycle orthogonal two-color laser field composed of 800 nm and 400 nm laser pulses. By changing the relative phase of the two laser pulses, a localized enhancement of NSDI yield is observed at 0.5πand 1.5π, which could be attributed to a rapid and substantial increase in the number of electrons returning to the parent ion within extremely short time intervals at these specific phases. Through the analysis of the electron–electron momentum correlations within different time windows of NSDI events and the angular distributions of emitted electrons in different channels, we observe a more pronounced electron–electron correlation phenomenon in the recollision-induced ionization(RII) channel. This is attributed to the shorter delay time in the RII channel.展开更多
When the amphibious vehicle navigates in water,the angle of the anti-wave plate and the position of the center of gravity greatly influence the navigation characteristics.In the relevant research on reducing the navig...When the amphibious vehicle navigates in water,the angle of the anti-wave plate and the position of the center of gravity greatly influence the navigation characteristics.In the relevant research on reducing the navigation resistance of amphibious vehicles by adjusting the angle of the anti-wave plate,there is a lack of scientific selection of parameters and reasonable research of simulation results by using mathematical methods,and the influence of the center of gravity position on navigation characteristics is not considered at the same time.To study the influence of the combinations of the angle of the anti-wave plate and the position of the center of gravity on the resistance reduction characteristics,a numerical calculation model of the amphibious unmanned vehicle was established by using the theory of computational fluid dynamics,and the experimental data verified the correctness of the numerical model.Based on this numerical model,the navigation characteristics of the amphibious unmanned vehicle were studied when the center of gravity was located at different positions,and the orthogonal experimental design method was used to optimize the parameters of the angle of the anti-wave plate and the position of the center of gravity.The results show that through the parameter optimization analysis based on the orthogonal experimental method,the combination of the optimal angle of the anti-wave plate and the position of the center of gravity is obtained.And the numerical simulation result of resistance is consistent with the predicted optimal solution.Compared with the maximum navigational resistance,the parameter optimization reduces the navigational resistance of the amphibious unmanned vehicle by 24%.展开更多
In gas metal arc welding(GMAW)process,the short-circuit transition was the most typical transition observed in molten metal droplets.This paper used orthogonal tests to explore the coupling effect law of welding proce...In gas metal arc welding(GMAW)process,the short-circuit transition was the most typical transition observed in molten metal droplets.This paper used orthogonal tests to explore the coupling effect law of welding process parameters on the quality of weld forming under short-circuit transition,the design of 3 factors and 3 levels of a total of 9 groups of orthogonal tests,welding current,welding voltage,welding speed as input parameters:effective area ratio,humps,actual linear power density,aspect ratio,Vickers hardness as output paramet-ers(response targets).Using range analysis and trend charts,we can visually depict the relationship between input parameters and a single output parameter,ultimately determining the optimal process parameters that impact the single output index.Then combined with gray the-ory to transform the three response targets into a single gray relational grade(GRG)for analysis,the optimal combination of the weld mor-phology parameters as follows:welding current 100 A,welding voltage 25 V,welding speed 30 cm/min.Finally,validation experiments were conducted,and the results showed that the error between the gray relational grade and the predicted value was 2.74%.It was observed that the effective area ratio of the response target significantly improved,validating the reliability of the orthogonal gray relational method.展开更多
[Objectives]To optimize the water extraction process of Fagopyri Dibotryis Rhizoma.[Methods]The entropy weight method was used to determine the weight of epicatechin extraction rate and dry extract rate and calculate ...[Objectives]To optimize the water extraction process of Fagopyri Dibotryis Rhizoma.[Methods]The entropy weight method was used to determine the weight of epicatechin extraction rate and dry extract rate and calculate the comprehensive score.The water extraction process of Fagopyri Dibotryis Rhizoma was optimized by orthogonal design with the comprehensive score as the indicator and the amount of water,extraction time and extraction times as the factors.[Results]The optimum extraction process of Fagopyri Dibotryis Rhizoma was as follows:adding 10 times of water,extracting 3 times,and extracting for 60 min each time.[Conclusions]The optimized extraction process is stable and feasible,and can be used for the extraction of Fagopyri Dibotryis Rhizoma.展开更多
This study evaluates the performance of 16 models sourced from the coupled model intercomparison project phase 6(CMIP6)in simulating marine heatwaves(MHWs)in the South China Sea(SCS)during the historical period(1982−2...This study evaluates the performance of 16 models sourced from the coupled model intercomparison project phase 6(CMIP6)in simulating marine heatwaves(MHWs)in the South China Sea(SCS)during the historical period(1982−2014),and also investigates future changes in SCS MHWs based on simulations from three shared socioeconomic pathway(SSP)scenarios(SSP126,SSP245,and SSP585)using CMIP6 models.Results demonstrate that the CMIP6 models perform well in simulating the spatial-temporal distribution and intensity of SCS MHWs,with their multi-model ensemble(MME)results showing the best performance.The reasonable agreement between the observations and CMIP6 MME reveals that the increasing trends of SCS MHWs are attributed to the warming sea surface temperature trend.Under various SSP scenarios,the year 2040 emerges as pivotal juncture for future shifts in SCS MHWs,marked by distinct variations in changing rate and amplitudes.This is characterized by an accelerated decrease in MHWs frequency and a notably heightened increase in mean intensity,duration,and total days after 2040.Furthermore,the projection results for SCS MHWs suggest that the spatial pattern of MHWs remains consistent across future periods.However,the intensity shows higher consistency only during the near-term period(2021−2050),while notable inconsistencies are observed during the medium-term(2041−2070)and long-term(2071−2100)periods under the three SSP scenarios.During the nearterm period,the SCS MHWs are characterized by moderate and strong events with high frequencies and relatively shorter durations.In contrast,during the medium-term period,MHWs are also characterized by moderate and strong events,but with longer-lasting and more intense events under the SSP245 and SSP585 scenarios.However,in the long-term period,extreme MHWs become the dominant feature under the SSP585 scenario,indicating a substantial intensification of SCS MHWs,effectively establishing a near-permanent state.展开更多
3D printing techniques offer an effective method in fabricating complex radially multi-material structures.However,it is challenging for complex and delicate radially multi-material model geometries without supporting...3D printing techniques offer an effective method in fabricating complex radially multi-material structures.However,it is challenging for complex and delicate radially multi-material model geometries without supporting structures,such as tissue vessels and tubular graft,among others.In this work,we tackle these challenges by developing a polar digital light processing technique which uses a rod as the printing platform.The 3D model fabrication is accomplished through line projection.The rotation and translation of the rod are synchronized to project and illuminate the photosensitive material volume.By controlling the distance between the rod and the printing window,we achieved the printing of tubular structures with a minimum wall thickness as thin as 50 micrometers.By controlling the width of fine slits at the printing window,we achieved the printing of structures with a minimum feature size of 10 micrometers.Our process accomplished the fabrication of thin-walled tubular graft structure with a thickness of only 100 micrometers and lengths of several centimeters within a timeframe of just 100 s.Additionally,it enables the printing of axial multi-material structures,thereby achieving adjustable mechanical strength.This method is conducive to rapid customization of tubular grafts and the manufacturing of tubular components in fields such as dentistry,aerospace,and more.展开更多
The advantages of a flat-panel X-ray source(FPXS)make it a promising candidate for imaging applications.Accurate imaging-system modeling and projection simulation are critical for analyzing imaging performance and res...The advantages of a flat-panel X-ray source(FPXS)make it a promising candidate for imaging applications.Accurate imaging-system modeling and projection simulation are critical for analyzing imaging performance and resolving overlapping projection issues in FPXS.The conventional analytical ray-tracing approach is limited by the number of patterns and is not applicable to FPXS-projection calculations.However,the computation time of Monte Carlo(MC)simulation is independent of the size of the patterned arrays in FPXS.This study proposes two high-efficiency MC projection simulators for FPXS:a graphics processing unit(GPU)-based phase-space sampling MC(gPSMC)simulator and GPU-based fluence sampling MC(gFSMC)simulator.The two simulators comprise three components:imaging-system modeling,photon initialization,and physical-interaction simulations in the phantom.Imaging-system modeling was performed by modeling the FPXS,imaging geometry,and detector.The gPSMC simulator samples the initial photons from the phase space,whereas the gFSMC simulator performs photon initialization from the calculated energy spectrum and fluence map.The entire process of photon interaction with the geometry and arrival at the detector was simulated in parallel using multiple GPU kernels,and projections based on the two simulators were calculated.The accuracies of the two simulators were evaluated by comparing them with the conventional analytical ray-tracing approach and acquired projections,and the efficiencies were evaluated by comparing the computation time.The results of simulated and realistic experiments illustrate the accuracy and efficiency of the proposed gPSMC and gFSMC simulators in the projection calculation of various phantoms.展开更多
The diurnal temperature range(DTR) serves as a vital indicator reflecting both natural climate variability and anthropogenic climate change. This study investigates the historical and projected multitemporal DTR varia...The diurnal temperature range(DTR) serves as a vital indicator reflecting both natural climate variability and anthropogenic climate change. This study investigates the historical and projected multitemporal DTR variations over the Tibetan Plateau. It assesses 23 climate models from phase 6 of the Coupled Model Intercomparison Project(CMIP6) using CN05.1 observational data as validation, evaluating their ability to simulate DTR over the Tibetan Plateau. Then, the evolution of DTR over the Tibetan Plateau under different shared socioeconomic pathway(SSP) scenarios for the near,middle, and long term of future projection are analyzed using 11 selected robustly performing models. Key findings reveal:(1) Among the models examined, BCC-CSM2-MR, EC-Earth3, EC-Earth3-CC, EC-Earth3-Veg, EC-Earth3-Veg-LR,FGOALS-g3, FIO-ESM-2-0, GFDL-ESM4, MPI-ESM1-2-HR, MPI-ESM1-2-LR, and INM-CM5-0 exhibit superior integrated simulation capability for capturing the spatiotemporal variability of DTR over the Tibetan Plateau.(2) Projection indicates a slightly increasing trend in DTR on the Tibetan Plateau in the SSP1-2.6 scenario, and decreasing trends in the SSP2-4.5, SSP3-7.0, and SPP5-8.5 scenarios. In certain areas, such as the southeastern edge of the Tibetan Plateau, western hinterland of the Tibetan Plateau, southern Kunlun, and the Qaidam basins, the changes in DTR are relatively large.(3) Notably, the warming rate of maximum temperature under SSP2-4.5, SSP3-7.0, and SPP5-8.5 is slower compared to that of minimum temperature, and it emerges as the primary contributor to the projected decrease in DTR over the Tibetan Plateau in the future.展开更多
This paper introduces a new method of calculating crown projection area(CPA),the area of level ground covered by a vertical projection of a tree crown from measured crown radii through numerical interpolation and inte...This paper introduces a new method of calculating crown projection area(CPA),the area of level ground covered by a vertical projection of a tree crown from measured crown radii through numerical interpolation and integration.This novel method and other four existing methods of calculating CPA were compared using detailed crown radius measurements from 30 tall trees of Eucalyptus pilularis variable in crown size,shape,and asymmetry.The four existing methods included the polygonal approach and three ways of calculating CPA as the area of a circle using the arithmetic,geometric and quadratic mean radius.Comparisons were made across a sequence of eight non-consecutive numbers(from 2 to 16)of measured crown radii for each tree over the range of crown asymmetry of the 30 trees through generalized linear models and multiple comparisons of means.The sequence covered the range of the number of crown radii measured for calculating the CPA of a tree in the literature.A crown asymmetry index within the unit interval was calculated for each tree to serve as a normative measure.With a slight overestimation of 2.2%on average and an overall mean error size of 7.9%across the numbers of crown radii that were compared,our new method was the least biased and most accurate.Calculating CPA as a circle using the quadratic mean crown radius was the second best,which had an average overestimation of 4.5%and overall mean error size of 8.8%.These two methods remained by and large unbiased as crown asymmetry increased,while the other three methods showed larger bias of underestimation.For the conventional method of using the arithmetic mean crown radius to calculate CPA as a circle,bias correction factors were developed as a function of crown asymmetry index to delineate the increasing magnitude of bias associated with greater degrees of crown asymmetry.This study reveals and demonstrates such relationships between the accuracy of CPA calculations and crown asymmetry and will help increase awareness among researchers and practitioners on the existence of bias in their CPA calculations and for the need to use an unbiased method in the future.Our new method is recommended for calculating CPA where at least four crown radius measurements per tree are available because that is the minimum number required for its use.展开更多
As a dynamic projection to latent structures(PLS)method with a good output prediction ability,dynamic inner PLS(DiPLS)is widely used in the prediction of key performance indi-cators.However,due to the oblique decompos...As a dynamic projection to latent structures(PLS)method with a good output prediction ability,dynamic inner PLS(DiPLS)is widely used in the prediction of key performance indi-cators.However,due to the oblique decomposition of the input space by DiPLS,there are false alarms in the actual industrial process during fault detection.To address the above problems,a dynamic modeling method based on autoregressive-dynamic inner total PLS(AR-DiTPLS)is proposed.The method first uses the regression relation matrix to decompose the input space orthogonally,which reduces useless information for the predic-tion output in the quality-related dynamic subspace.Then,a vector autoregressive model(VAR)is constructed for the predic-tion score to separate dynamic information and static informa-tion.Based on the VAR model,appropriate statistical indicators are further constructed for online monitoring,which reduces the occurrence of false alarms.The effectiveness of the method is verified by a Tennessee-Eastman industrial simulation process and a three-phase flow system.展开更多
文摘In this paper,some refinements of norm equalities and inequalities of combination of two orthogonal projections are established.We use certain norm inequalities for positive contraction operator to establish norm inequalities for combination of orthogonal projections on a Hilbert space.Furthermore,we give necessary and sufficient conditions under which the norm of the above combination of o`rthogonal projections attains its optimal value.
文摘In this article, I consider projection groups on function spaces, more specifically the space of polynomials P<sub>n</sub>[x]. I will show that a very similar construct of projection operators allows us to project into the subspaces of P<sub>n</sub>[x] where the function h ∈P<sub>n</sub>[x] represents the closets function to f ∈P<sub>n</sub>[x] in the least square sense. I also demonstrate that we can generalise projections by constructing operators i.e. in R<sup>n+1</sup> using the metric tensor on P<sub>n</sub>[x]. This allows one to project a polynomial function onto another by mapping it to its coefficient vector in R<sup>n+1</sup>. This can be also achieved with the Kronecker Product as detailed in this paper.
基金supported by Guangdong Provincial Basic and Applied Basic Research Fund,No.2021A1515011299(to KT)。
文摘Glutamatergic projection neurons generate sophisticated excitatory circuits to integrate and transmit information among different cortical areas,and between the neocortex and other regions of the brain and spinal cord.Appropriate development of cortical projection neurons is regulated by certain essential events such as neural fate determination,proliferation,specification,differentiation,migration,survival,axonogenesis,and synaptogenesis.These processes are precisely regulated in a tempo-spatial manner by intrinsic factors,extrinsic signals,and neural activities.The generation of correct subtypes and precise connections of projection neurons is imperative not only to support the basic cortical functions(such as sensory information integration,motor coordination,and cognition)but also to prevent the onset and progression of neurodevelopmental disorders(such as intellectual disability,autism spectrum disorders,anxiety,and depression).This review mainly focuses on the recent progress of transcriptional regulations on the development and diversity of neocortical projection neurons and the clinical relevance of the failure of transcriptional modulations.
基金supported by the National Key R&D Program of China(No.2022YFF0800601)National Scientific Foundation of China(Nos.41930103 and 41774047).
文摘In this study,the vertical components of broadband teleseismic P wave data recorded by China Earthquake Network are used to image the rupture processes of the February 6th,2023 Turkish earthquake doublet via back projection analysis.Data in two frequency bands(0.5-2 Hz and 1-3 Hz)are used in the imaging processes.The results show that the rupture of the first event extends about 200 km to the northeast and about 150 km to the southwest,lasting~90 s in total.The southwestern rupture is triggered by the northeastern rupture,demonstrating a sequential bidirectional unilateral rupture pattern.The rupture of the second event extends approximately 80 km in both northeast and west directions,lasting~35 s in total and demonstrates a typical bilateral rupture feature.The cascading ruptures on both sides also reflect the occurrence of selective rupture behaviors on bifurcated faults.In addition,we observe super-shear ruptures on certain fault sections with relatively straight fault structures and sparse aftershocks.
基金supported by the National Key R&D Program of China(Grant Nos.2022YFA1603300 and 2022YFA1603200)the Science Challenge Project(Grant No.TZ2018005)in China+1 种基金the National Natural Science Foundation of China(Grant Nos.11805188 and 12175209)the Laser Fusion Research Center Funds for Young Talents(Grant No.RCFPD6-2022-1).
文摘We present an application of short-pulse laser-generated hard x rays for the diagnosis of indirectly driven double shell targets. Coneinserted double shell targets were imploded through an indirect drive approach on the upgraded SG-II laser facility. Then, based on thepoint-projection hard x-ray radiography technique, time-resolved radiography of the double shell targets, including that of their near-peakcompression, were obtained. The backlighter source was created by the interactions of a high-intensity short pulsed laser with a metalmicrowire target. Images of the target near peak compression were obtained with an Au microwire. In addition, radiation hydrodynamicsimulations were performed, and the target evolution obtained agrees well with the experimental results. Using the radiographic images, arealdensities of the targets were evaluated.
基金supported by the National Natural Science Foundation of China(62176218,62176027)the Fundamental Research Funds for the Central Universities(XDJK2020TY003)the Funds for Chongqing Talent Plan(cstc2024ycjh-bgzxm0082)。
文摘The Nesterov accelerated dynamical approach serves as an essential tool for addressing convex optimization problems with accelerated convergence rates.Most previous studies in this field have primarily concentrated on unconstrained smooth con-vex optimization problems.In this paper,on the basis of primal-dual dynamical approach,Nesterov accelerated dynamical approach,projection operator and directional gradient,we present two accelerated primal-dual projection neurodynamic approaches with time scaling to address convex optimization problems with smooth and nonsmooth objective functions subject to linear and set constraints,which consist of a second-order ODE(ordinary differential equation)or differential conclusion system for the primal variables and a first-order ODE for the dual vari-ables.By satisfying specific conditions for time scaling,we demonstrate that the proposed approaches have a faster conver-gence rate.This only requires assuming convexity of the objective function.We validate the effectiveness of our proposed two accel-erated primal-dual projection neurodynamic approaches through numerical experiments.
基金National Key R&D Program of China(Grant No.2020YFC1512404).
文摘To investigate the influence of structural parameters on the performances and internal flow characteristics of partial flow pumps at a low specific speed of 10000 rpm,special attention was paid to the first and second stage impeller guide vanes.Moreover,the impeller blade outlet width,impeller inlet diameter,blade inclination angle,and number of blades were considered for orthogonal tests.Accordingly,nine groups of design solutions were formed,and then used as a basis for the execution of numerical simulations(CFD)aimed at obtaining the efficiency values and heads for each design solution group.The influence of impeller geometric parameters on the efficiency and head was explored,and the“weight”of each factor was obtained via a range analysis.Optimal structural parameters were finally chosen on the basis of the numerical simulation results,and the performances of the optimized model were verified accordingly(yet by means of CFD).Evidence is provided that the increase in the efficiency and head of the optimized model was 12.11%and 23.5 m,respectively,compared with those of the original model.
基金supported by the National Natural Science Foundation of China(Grant Nos.12074265,12234002,and 92250303)the Guangdong Basic and Applied Basic Research Foundation(Grant No.2022A1515010329)。
文摘Based on numerical solutions of the time-dependent Schr ¨odinger equation, we theoretically investigate the photoelectron spectrum of hydrogen atoms ionized by a pair of ultrashort, intense, and orthogonally polarized laser pulses with a relative time delay in a pump–probe configuration. The pump pulse resonantly excites electrons from the 1s and 2p levels,inducing Rabi oscillations. The resulting dynamically enhanced Autler–Townes(AT) splitting is observed in the photoelectron energy spectrum upon interaction with the second probe pulse. In contrast to the previous parallel-polarization scheme, the proposed orthogonal-polarization configuration enables the resolution of dynamically enhanced AT splitting over a considerably wider range of probe photon energies.
基金supported by the National Key R&D Program of China(Nos.2022YFA1602402,2020YFE0202001,2023YFA1606900)the National Natural Science Foundation of China(NSFC)(Nos.12235003,11835002,11925502,11705031,12275053,12147101).
文摘Active target time projection chambers are state-of-the-art tools in the field of low-energy nuclear physics and are particularly suitable for experiments using low-intensity radioactive ion beams or gamma rays.The Fudan multi-purpose active target time projection chamber(fMeta-TPC)with 2048 channels was developed to studyα-clustering nuclei.This study focused on the photonuclear reaction with a laser Compton scattering gamma source,particularly for the decay of the highly excitedαcluster state.The design of fMeta-TPC is described in this paper.A comprehensive evaluation of its offline performance was conducted using an ultraviolet laser and ^(241)Amαsource.The results showed that the intrinsic angular resolution of the detector was within 0.30°,and the detector had an energy resolution of 6.85%for 3.0 MeVαparticles.The gain uniformity of the detector was approximately 10%(RMS/Mean),as tested by the ^(55)Fe X-ray source.
基金supported by the Guangxi Science and Technology base and Talent Project(AD22080047)the National Natural Science Foundation of Guangxi Province(2023GXNFSBA 026063)+1 种基金the Innovation Funds of Chinese University(2021BCF03001)the special foundation for Guangxi Ba Gui Scholars.
文摘A cautious projection BFGS method is proposed for solving nonconvex unconstrained optimization problems.The global convergence of this method as well as a stronger general convergence result can be proven without a gradient Lipschitz continuity assumption,which is more in line with the actual problems than the existing modified BFGS methods and the traditional BFGS method.Under some additional conditions,the method presented has a superlinear convergence rate,which can be regarded as an extension and supplement of BFGS-type methods with the projection technique.Finally,the effectiveness and application prospects of the proposed method are verified by numerical experiments.
基金partly supported by the National Natural Science Foundation of China (Grant Nos. 12034008,12250003, and 11727810)the Program of Introducing Talents of Discipline to Universities 111 Project (B12024)。
文摘Electron dynamics during non-sequential double ionization(NSDI) is one of the most attractive areas of research in the field of laser–atom or laser–molecule interaction. Based on the classic two-dimensional model, we study the process of NSDI of argon atoms driven by a few-cycle orthogonal two-color laser field composed of 800 nm and 400 nm laser pulses. By changing the relative phase of the two laser pulses, a localized enhancement of NSDI yield is observed at 0.5πand 1.5π, which could be attributed to a rapid and substantial increase in the number of electrons returning to the parent ion within extremely short time intervals at these specific phases. Through the analysis of the electron–electron momentum correlations within different time windows of NSDI events and the angular distributions of emitted electrons in different channels, we observe a more pronounced electron–electron correlation phenomenon in the recollision-induced ionization(RII) channel. This is attributed to the shorter delay time in the RII channel.
基金supported by the National Natural Science Foundation of China(52174154).
文摘When the amphibious vehicle navigates in water,the angle of the anti-wave plate and the position of the center of gravity greatly influence the navigation characteristics.In the relevant research on reducing the navigation resistance of amphibious vehicles by adjusting the angle of the anti-wave plate,there is a lack of scientific selection of parameters and reasonable research of simulation results by using mathematical methods,and the influence of the center of gravity position on navigation characteristics is not considered at the same time.To study the influence of the combinations of the angle of the anti-wave plate and the position of the center of gravity on the resistance reduction characteristics,a numerical calculation model of the amphibious unmanned vehicle was established by using the theory of computational fluid dynamics,and the experimental data verified the correctness of the numerical model.Based on this numerical model,the navigation characteristics of the amphibious unmanned vehicle were studied when the center of gravity was located at different positions,and the orthogonal experimental design method was used to optimize the parameters of the angle of the anti-wave plate and the position of the center of gravity.The results show that through the parameter optimization analysis based on the orthogonal experimental method,the combination of the optimal angle of the anti-wave plate and the position of the center of gravity is obtained.And the numerical simulation result of resistance is consistent with the predicted optimal solution.Compared with the maximum navigational resistance,the parameter optimization reduces the navigational resistance of the amphibious unmanned vehicle by 24%.
基金supported by Major Special Projects of Science and Technology in Fujian Province,(Grant No.2020HZ03018)Natural Science Foundation of Fujian Province(Grant No.2020J01873).
文摘In gas metal arc welding(GMAW)process,the short-circuit transition was the most typical transition observed in molten metal droplets.This paper used orthogonal tests to explore the coupling effect law of welding process parameters on the quality of weld forming under short-circuit transition,the design of 3 factors and 3 levels of a total of 9 groups of orthogonal tests,welding current,welding voltage,welding speed as input parameters:effective area ratio,humps,actual linear power density,aspect ratio,Vickers hardness as output paramet-ers(response targets).Using range analysis and trend charts,we can visually depict the relationship between input parameters and a single output parameter,ultimately determining the optimal process parameters that impact the single output index.Then combined with gray the-ory to transform the three response targets into a single gray relational grade(GRG)for analysis,the optimal combination of the weld mor-phology parameters as follows:welding current 100 A,welding voltage 25 V,welding speed 30 cm/min.Finally,validation experiments were conducted,and the results showed that the error between the gray relational grade and the predicted value was 2.74%.It was observed that the effective area ratio of the response target significantly improved,validating the reliability of the orthogonal gray relational method.
文摘[Objectives]To optimize the water extraction process of Fagopyri Dibotryis Rhizoma.[Methods]The entropy weight method was used to determine the weight of epicatechin extraction rate and dry extract rate and calculate the comprehensive score.The water extraction process of Fagopyri Dibotryis Rhizoma was optimized by orthogonal design with the comprehensive score as the indicator and the amount of water,extraction time and extraction times as the factors.[Results]The optimum extraction process of Fagopyri Dibotryis Rhizoma was as follows:adding 10 times of water,extracting 3 times,and extracting for 60 min each time.[Conclusions]The optimized extraction process is stable and feasible,and can be used for the extraction of Fagopyri Dibotryis Rhizoma.
基金The National Natural Science Foundation of China under contract Nos 42275024 and 42105040the Key R&D Program of China under contract No.2022YFE0203500+3 种基金the Guangdong Basic and Applied Basic Research Foundation under contract Nos 2023B1515020009 and 2024B1515040024the Youth Innovation Promotion Association CAS under contract No.2020340the Special Fund of South China Sea Institute of Oceanology of the Chinese Academy of Sciences under contract No.SCSIO2023QY01the Science and Technology Planning Project of Guangzhou under contract No.2024A04J6275.
文摘This study evaluates the performance of 16 models sourced from the coupled model intercomparison project phase 6(CMIP6)in simulating marine heatwaves(MHWs)in the South China Sea(SCS)during the historical period(1982−2014),and also investigates future changes in SCS MHWs based on simulations from three shared socioeconomic pathway(SSP)scenarios(SSP126,SSP245,and SSP585)using CMIP6 models.Results demonstrate that the CMIP6 models perform well in simulating the spatial-temporal distribution and intensity of SCS MHWs,with their multi-model ensemble(MME)results showing the best performance.The reasonable agreement between the observations and CMIP6 MME reveals that the increasing trends of SCS MHWs are attributed to the warming sea surface temperature trend.Under various SSP scenarios,the year 2040 emerges as pivotal juncture for future shifts in SCS MHWs,marked by distinct variations in changing rate and amplitudes.This is characterized by an accelerated decrease in MHWs frequency and a notably heightened increase in mean intensity,duration,and total days after 2040.Furthermore,the projection results for SCS MHWs suggest that the spatial pattern of MHWs remains consistent across future periods.However,the intensity shows higher consistency only during the near-term period(2021−2050),while notable inconsistencies are observed during the medium-term(2041−2070)and long-term(2071−2100)periods under the three SSP scenarios.During the nearterm period,the SCS MHWs are characterized by moderate and strong events with high frequencies and relatively shorter durations.In contrast,during the medium-term period,MHWs are also characterized by moderate and strong events,but with longer-lasting and more intense events under the SSP245 and SSP585 scenarios.However,in the long-term period,extreme MHWs become the dominant feature under the SSP585 scenario,indicating a substantial intensification of SCS MHWs,effectively establishing a near-permanent state.
基金supported financially by the Fundamental Research Funds for the Central Universities (YWF-22-K-101,YWF-23-L-805 and YWF-23-YG-QB-006)the support from the National Natural Science Foundation of China (12372106)Fundamental Research Funds for the Central Universities
文摘3D printing techniques offer an effective method in fabricating complex radially multi-material structures.However,it is challenging for complex and delicate radially multi-material model geometries without supporting structures,such as tissue vessels and tubular graft,among others.In this work,we tackle these challenges by developing a polar digital light processing technique which uses a rod as the printing platform.The 3D model fabrication is accomplished through line projection.The rotation and translation of the rod are synchronized to project and illuminate the photosensitive material volume.By controlling the distance between the rod and the printing window,we achieved the printing of tubular structures with a minimum wall thickness as thin as 50 micrometers.By controlling the width of fine slits at the printing window,we achieved the printing of structures with a minimum feature size of 10 micrometers.Our process accomplished the fabrication of thin-walled tubular graft structure with a thickness of only 100 micrometers and lengths of several centimeters within a timeframe of just 100 s.Additionally,it enables the printing of axial multi-material structures,thereby achieving adjustable mechanical strength.This method is conducive to rapid customization of tubular grafts and the manufacturing of tubular components in fields such as dentistry,aerospace,and more.
文摘The advantages of a flat-panel X-ray source(FPXS)make it a promising candidate for imaging applications.Accurate imaging-system modeling and projection simulation are critical for analyzing imaging performance and resolving overlapping projection issues in FPXS.The conventional analytical ray-tracing approach is limited by the number of patterns and is not applicable to FPXS-projection calculations.However,the computation time of Monte Carlo(MC)simulation is independent of the size of the patterned arrays in FPXS.This study proposes two high-efficiency MC projection simulators for FPXS:a graphics processing unit(GPU)-based phase-space sampling MC(gPSMC)simulator and GPU-based fluence sampling MC(gFSMC)simulator.The two simulators comprise three components:imaging-system modeling,photon initialization,and physical-interaction simulations in the phantom.Imaging-system modeling was performed by modeling the FPXS,imaging geometry,and detector.The gPSMC simulator samples the initial photons from the phase space,whereas the gFSMC simulator performs photon initialization from the calculated energy spectrum and fluence map.The entire process of photon interaction with the geometry and arrival at the detector was simulated in parallel using multiple GPU kernels,and projections based on the two simulators were calculated.The accuracies of the two simulators were evaluated by comparing them with the conventional analytical ray-tracing approach and acquired projections,and the efficiencies were evaluated by comparing the computation time.The results of simulated and realistic experiments illustrate the accuracy and efficiency of the proposed gPSMC and gFSMC simulators in the projection calculation of various phantoms.
基金supported by The Second Tibetan Plateau Scientific Expedition and Research (STEP) program(Grant No. 2019QZKK0102)the National Natural Science Foundation of China (Grant No. 41975135)+1 种基金the Natural Science Foundation of Sichuan,China (Grant No. 2022NSFSC1092)funded by the China Scholarship Council。
文摘The diurnal temperature range(DTR) serves as a vital indicator reflecting both natural climate variability and anthropogenic climate change. This study investigates the historical and projected multitemporal DTR variations over the Tibetan Plateau. It assesses 23 climate models from phase 6 of the Coupled Model Intercomparison Project(CMIP6) using CN05.1 observational data as validation, evaluating their ability to simulate DTR over the Tibetan Plateau. Then, the evolution of DTR over the Tibetan Plateau under different shared socioeconomic pathway(SSP) scenarios for the near,middle, and long term of future projection are analyzed using 11 selected robustly performing models. Key findings reveal:(1) Among the models examined, BCC-CSM2-MR, EC-Earth3, EC-Earth3-CC, EC-Earth3-Veg, EC-Earth3-Veg-LR,FGOALS-g3, FIO-ESM-2-0, GFDL-ESM4, MPI-ESM1-2-HR, MPI-ESM1-2-LR, and INM-CM5-0 exhibit superior integrated simulation capability for capturing the spatiotemporal variability of DTR over the Tibetan Plateau.(2) Projection indicates a slightly increasing trend in DTR on the Tibetan Plateau in the SSP1-2.6 scenario, and decreasing trends in the SSP2-4.5, SSP3-7.0, and SPP5-8.5 scenarios. In certain areas, such as the southeastern edge of the Tibetan Plateau, western hinterland of the Tibetan Plateau, southern Kunlun, and the Qaidam basins, the changes in DTR are relatively large.(3) Notably, the warming rate of maximum temperature under SSP2-4.5, SSP3-7.0, and SPP5-8.5 is slower compared to that of minimum temperature, and it emerges as the primary contributor to the projected decrease in DTR over the Tibetan Plateau in the future.
基金supported by the Natural Science Foundation of China (32071758)the Fundamental Research Funds for the Central Universities of China (No. 2572020BA01)
文摘This paper introduces a new method of calculating crown projection area(CPA),the area of level ground covered by a vertical projection of a tree crown from measured crown radii through numerical interpolation and integration.This novel method and other four existing methods of calculating CPA were compared using detailed crown radius measurements from 30 tall trees of Eucalyptus pilularis variable in crown size,shape,and asymmetry.The four existing methods included the polygonal approach and three ways of calculating CPA as the area of a circle using the arithmetic,geometric and quadratic mean radius.Comparisons were made across a sequence of eight non-consecutive numbers(from 2 to 16)of measured crown radii for each tree over the range of crown asymmetry of the 30 trees through generalized linear models and multiple comparisons of means.The sequence covered the range of the number of crown radii measured for calculating the CPA of a tree in the literature.A crown asymmetry index within the unit interval was calculated for each tree to serve as a normative measure.With a slight overestimation of 2.2%on average and an overall mean error size of 7.9%across the numbers of crown radii that were compared,our new method was the least biased and most accurate.Calculating CPA as a circle using the quadratic mean crown radius was the second best,which had an average overestimation of 4.5%and overall mean error size of 8.8%.These two methods remained by and large unbiased as crown asymmetry increased,while the other three methods showed larger bias of underestimation.For the conventional method of using the arithmetic mean crown radius to calculate CPA as a circle,bias correction factors were developed as a function of crown asymmetry index to delineate the increasing magnitude of bias associated with greater degrees of crown asymmetry.This study reveals and demonstrates such relationships between the accuracy of CPA calculations and crown asymmetry and will help increase awareness among researchers and practitioners on the existence of bias in their CPA calculations and for the need to use an unbiased method in the future.Our new method is recommended for calculating CPA where at least four crown radius measurements per tree are available because that is the minimum number required for its use.
基金supported by the National Natural Science Foundation of China(62273354,61673387,61833016).
文摘As a dynamic projection to latent structures(PLS)method with a good output prediction ability,dynamic inner PLS(DiPLS)is widely used in the prediction of key performance indi-cators.However,due to the oblique decomposition of the input space by DiPLS,there are false alarms in the actual industrial process during fault detection.To address the above problems,a dynamic modeling method based on autoregressive-dynamic inner total PLS(AR-DiTPLS)is proposed.The method first uses the regression relation matrix to decompose the input space orthogonally,which reduces useless information for the predic-tion output in the quality-related dynamic subspace.Then,a vector autoregressive model(VAR)is constructed for the predic-tion score to separate dynamic information and static informa-tion.Based on the VAR model,appropriate statistical indicators are further constructed for online monitoring,which reduces the occurrence of false alarms.The effectiveness of the method is verified by a Tennessee-Eastman industrial simulation process and a three-phase flow system.