A general theoretical model is developed to investigate the sound radiation from an infinite orthogonally stiffened plate under point excitation force. The plate can be metallic or composite, and fluid loading is also...A general theoretical model is developed to investigate the sound radiation from an infinite orthogonally stiffened plate under point excitation force. The plate can be metallic or composite, and fluid loading is also considered in the research. The first order shear deformation theory is used to account for the transverse shear deformation. The motion of the equally spaced stiffeners is examined by considering their bending vibrations and torsional movements. Based on the periodic structure theory and the concepts of the equivalent dynamic flexibility of the plate, the generalized vibro-acoustic equation of the model is obtained by applying the Fourier transform method. The generalized model that can be solved numerically is validated by comparing model predictions with the existing results. Numerical calculations are performed to investigate the effects of the location of the excitation, the spacing of the stiffeners, the plate thickness, the strengthening form and the fiber orientation on the sound radiation characteristic of the orthogonaUy stiffened plate, and some practical conclusions are drawn from these parameter studies.展开更多
基金financially supported by the Science Fund for Outstanding Youth of the National Natural Science Foundation of China(Grant No.51222904)the National Security Major Basic Research Program of China(Grant No.613157)+1 种基金the Key Program of National Natural Science Foundation of China(Grant No.0939002)the National Natural Science Foundation of China(Grant No.51209052)
文摘A general theoretical model is developed to investigate the sound radiation from an infinite orthogonally stiffened plate under point excitation force. The plate can be metallic or composite, and fluid loading is also considered in the research. The first order shear deformation theory is used to account for the transverse shear deformation. The motion of the equally spaced stiffeners is examined by considering their bending vibrations and torsional movements. Based on the periodic structure theory and the concepts of the equivalent dynamic flexibility of the plate, the generalized vibro-acoustic equation of the model is obtained by applying the Fourier transform method. The generalized model that can be solved numerically is validated by comparing model predictions with the existing results. Numerical calculations are performed to investigate the effects of the location of the excitation, the spacing of the stiffeners, the plate thickness, the strengthening form and the fiber orientation on the sound radiation characteristic of the orthogonaUy stiffened plate, and some practical conclusions are drawn from these parameter studies.