The size-dependent effect on the biaxial and shear nonlinear buckling analysis of an isotropic and orthotropic micro-plate based on the surface stress, the modified couple stress theory (MCST), and the nonlocal elas...The size-dependent effect on the biaxial and shear nonlinear buckling analysis of an isotropic and orthotropic micro-plate based on the surface stress, the modified couple stress theory (MCST), and the nonlocal elasticity theories using the differential quadrature method (DQM) is presented. Main advantages of the MCST over the classical theory (CT) are the inclusion of the asymmetric couple stress tensor and the consideration of only one material length scale parameter. Based on the nonlinear von Karman assumption, the governing equations of equilibrium for the micro-classical plate consid- ering midplane displacements are derived based on the minimum principle of potential energy. Using the DQM, the biaxial and shear critical buckling loads of the micro-plate for various boundary conditions are obtained. Accuracy of the obtained results is validated by comparing the solutions with those reported in the literature. A parametric study is conducted to show the effects of the aspect ratio, the side-to-thickness ratio, Eringen's nonlocal parameter, the material length scale parameter, Young's modulus of the surface layer, the surface residual stress, the polymer matrix coefficients, and various boundary conditions on the dimensionless uniaxial, biaxial, and shear critical buckling loads. The results indicate that the critical buckling loads are strongly sensitive to Eringen's nonlocal parameter, the material length scale parameter, and the surface residual stress effects, while the effect of Young's modulus of the surface layer on the critical buckling load is negligible. Also, considering the size dependent effect causes the increase in the stiffness of the orthotropic micro-plate. The results show that the critical biaxial buckling load increases with an increase in G12/E2 and vice versa for E1/E2. It is shown that the nonlinear biaxial buckling ratio decreases as the aspect ratio increases and vice versa for the buckling amplitude. Because of the most lightweight micro-composite materials with high strength/weight and stiffness/weight ratios, it is anticipated that the results of the present work are useful in experimental characterization of the mechanical properties of micro-composite plates in the aircraft industry and other engineering applications.展开更多
A practical method for computing the one-way rectangular orthotropicplate(isotropic plate as a special case)is suggested in this paper.The supported condi-tions in two opposite edges may be simply supported,continuous...A practical method for computing the one-way rectangular orthotropicplate(isotropic plate as a special case)is suggested in this paper.The supported condi-tions in two opposite edges may be simply supported,continuous or supportednonsymmetrically and the other two opposite edges are slide-supported or free.A series ofsimplified formulas are given for calculating the bending moments along the cross section(loaded section),in which the acting point of the concentrated load or the center of a rec-tangular uniform load is located.The valid range and accuracy of these formulas were stud-ied and the approximate results were examined and compared extensively with those by thetriangular series solution or finite element method.展开更多
A new structure design method of elastic composite cylindrical roller bearing is proposed, in which PTFE is embedded into a hollow cylindrical rolling element, according to the principle of creative combinations and t...A new structure design method of elastic composite cylindrical roller bearing is proposed, in which PTFE is embedded into a hollow cylindrical rolling element, according to the principle of creative combinations and through innovation research on cylindrical roller bearing structure. In order to systematically investigate the inner wall bending stress of the rolling element in elastic composite cylindrical roller bearing, finite element analysis on different elastic composite cylindrical rolling elements was conducted. The results show that, the bending stress of the elastic composite cylindrical rolling increases along with the increase of hollowness with the same filling material. The bending stress of the elastic composite cylindrical rolling element decreases along with the increase of the elasticity modulus of the material under the same physical dimension. Under the same load, on hollow cylindrical rolling element, the maximum bending tensile stress values of the elastic composite cylindrical rolling element after material filling at 0° and 180° are 8.2% and 9.5%, respectively, lower than those of the deep cavity hollow cylindrical rolling element. In addition, the maximum bending-compressive stress value at 90° is decreased by 6.1%.展开更多
In this paper, based on complex variables and conformal mapping methods, using the refined dynamic equation of plates, elastic wave scattering and dynamic stress concentrations in plates with two cutouts were studied....In this paper, based on complex variables and conformal mapping methods, using the refined dynamic equation of plates, elastic wave scattering and dynamic stress concentrations in plates with two cutouts were studied. Applying the orthogonal function expansion method, the problem to be solved can be reduced into the solution of a set of infinite algebraic equations. According to free boundary conditions, numerical results of dynamic moment concentration factors in thick plates with two circular cutouts analyze that: there will be more complex interaction changes between two-cutout situation than single cutout situation. In the case of low frequency or high frequency and thin plate, the hole-spacing in the absence of coupling interactions was larger or smaller. The numerical results and method can be used to analyze the dynamics and strength of plate-like structures.展开更多
The paper is dedicated to the development of the theory of orthotropic thick plates with consideration of internal forces, moments and bimoments. The equations of motion of a plate are described by two systems of six ...The paper is dedicated to the development of the theory of orthotropic thick plates with consideration of internal forces, moments and bimoments. The equations of motion of a plate are described by two systems of six equations. New equations of motion of the plate and the boundary conditions relative to displacements, forces, moments, and bimoments are given. As an example, the problems of free and forced oscillations of a thick plate are considered under the effect of sinusoidal periodic load. The problem is solved by Finite Difference Method. Eigenfrequencies of the plate are determined, numeric maximum values of displacements, forces and moments of the plate are obtained depending on the frequency of external force. It is shown that when the value of the frequency of external effect approaches the eigenfrequency, there occurs an increase in displacement, force and moment values;that testifies a gradual transition of the motion of plate points into the resonant mode.展开更多
The objective of the present paper is to develop nonlinear finite element method models for predicting the weld-induced initial deflection and residual stress of plating in steel stiffened-plate structures. For this p...The objective of the present paper is to develop nonlinear finite element method models for predicting the weld-induced initial deflection and residual stress of plating in steel stiffened-plate structures. For this purpose, three-dimensional thermo-elastic-plastic finite element method computations are performed with varying plate thickness and weld bead length (leg length) in welded plate panels, the latter being associated with weld heat input. The finite element models are verified by a comparison with experimental database which was obtained by the authors in separate studies with full scale measurements. It is concluded that the nonlinear finite element method models developed in the present paper are very accurate in terms of predicting the weld-induced initial imperfections of steel stiffened plate structures. Details of the numerical computations together with test database are documented.展开更多
Low shape matching and high stress shielding rates between bone plate and human bone are not conducive to the primary healing of fracture.In this study,taking the fracture site of the lower one‐third of human tibia a...Low shape matching and high stress shielding rates between bone plate and human bone are not conducive to the primary healing of fracture.In this study,taking the fracture site of the lower one‐third of human tibia as an application case,six types of personalised Ti6Al4V tibial plates with grooved surface were designed and evaluated by reverse en-gineering and finite element analysis.The results showed that the grooved design can reduce the stress shielding rate of bone plate and promote the facture healing.Among the six types of bone plates,the‘OUT-MI’bone plate has the lowest stress shielding rate and the most uniform stress distribution.Meanwhile,with the increasing tibial load during the convalescence,the average stress and maximum axial displacement of the tibial fracture surface increased,which can effectively improve the bone regeneration in the tibial fracture area.Moreover,there was no significant difference in four-point bending performance between the‘OUT-MI’bone plate and the‘STR-BE’bone plate,indicating that the mechanical properties of this bone plate were reliable.The results provide a theoretical basis for the design of fracture fixation plates on clinical treatment.展开更多
基金supported by the Iranian Nanotechnology Development Committee and the University of Kashan(No.363452/10)
文摘The size-dependent effect on the biaxial and shear nonlinear buckling analysis of an isotropic and orthotropic micro-plate based on the surface stress, the modified couple stress theory (MCST), and the nonlocal elasticity theories using the differential quadrature method (DQM) is presented. Main advantages of the MCST over the classical theory (CT) are the inclusion of the asymmetric couple stress tensor and the consideration of only one material length scale parameter. Based on the nonlinear von Karman assumption, the governing equations of equilibrium for the micro-classical plate consid- ering midplane displacements are derived based on the minimum principle of potential energy. Using the DQM, the biaxial and shear critical buckling loads of the micro-plate for various boundary conditions are obtained. Accuracy of the obtained results is validated by comparing the solutions with those reported in the literature. A parametric study is conducted to show the effects of the aspect ratio, the side-to-thickness ratio, Eringen's nonlocal parameter, the material length scale parameter, Young's modulus of the surface layer, the surface residual stress, the polymer matrix coefficients, and various boundary conditions on the dimensionless uniaxial, biaxial, and shear critical buckling loads. The results indicate that the critical buckling loads are strongly sensitive to Eringen's nonlocal parameter, the material length scale parameter, and the surface residual stress effects, while the effect of Young's modulus of the surface layer on the critical buckling load is negligible. Also, considering the size dependent effect causes the increase in the stiffness of the orthotropic micro-plate. The results show that the critical biaxial buckling load increases with an increase in G12/E2 and vice versa for E1/E2. It is shown that the nonlinear biaxial buckling ratio decreases as the aspect ratio increases and vice versa for the buckling amplitude. Because of the most lightweight micro-composite materials with high strength/weight and stiffness/weight ratios, it is anticipated that the results of the present work are useful in experimental characterization of the mechanical properties of micro-composite plates in the aircraft industry and other engineering applications.
文摘A practical method for computing the one-way rectangular orthotropicplate(isotropic plate as a special case)is suggested in this paper.The supported condi-tions in two opposite edges may be simply supported,continuous or supportednonsymmetrically and the other two opposite edges are slide-supported or free.A series ofsimplified formulas are given for calculating the bending moments along the cross section(loaded section),in which the acting point of the concentrated load or the center of a rec-tangular uniform load is located.The valid range and accuracy of these formulas were stud-ied and the approximate results were examined and compared extensively with those by thetriangular series solution or finite element method.
基金Project(51175168)supported by the National Natural Science Foundation of ChinaProjects(2011GK3148,2012GK3092)supported by Science and Technology Program of Hunan Province,China
文摘A new structure design method of elastic composite cylindrical roller bearing is proposed, in which PTFE is embedded into a hollow cylindrical rolling element, according to the principle of creative combinations and through innovation research on cylindrical roller bearing structure. In order to systematically investigate the inner wall bending stress of the rolling element in elastic composite cylindrical roller bearing, finite element analysis on different elastic composite cylindrical rolling elements was conducted. The results show that, the bending stress of the elastic composite cylindrical rolling increases along with the increase of hollowness with the same filling material. The bending stress of the elastic composite cylindrical rolling element decreases along with the increase of the elasticity modulus of the material under the same physical dimension. Under the same load, on hollow cylindrical rolling element, the maximum bending tensile stress values of the elastic composite cylindrical rolling element after material filling at 0° and 180° are 8.2% and 9.5%, respectively, lower than those of the deep cavity hollow cylindrical rolling element. In addition, the maximum bending-compressive stress value at 90° is decreased by 6.1%.
文摘In this paper, based on complex variables and conformal mapping methods, using the refined dynamic equation of plates, elastic wave scattering and dynamic stress concentrations in plates with two cutouts were studied. Applying the orthogonal function expansion method, the problem to be solved can be reduced into the solution of a set of infinite algebraic equations. According to free boundary conditions, numerical results of dynamic moment concentration factors in thick plates with two circular cutouts analyze that: there will be more complex interaction changes between two-cutout situation than single cutout situation. In the case of low frequency or high frequency and thin plate, the hole-spacing in the absence of coupling interactions was larger or smaller. The numerical results and method can be used to analyze the dynamics and strength of plate-like structures.
文摘The paper is dedicated to the development of the theory of orthotropic thick plates with consideration of internal forces, moments and bimoments. The equations of motion of a plate are described by two systems of six equations. New equations of motion of the plate and the boundary conditions relative to displacements, forces, moments, and bimoments are given. As an example, the problems of free and forced oscillations of a thick plate are considered under the effect of sinusoidal periodic load. The problem is solved by Finite Difference Method. Eigenfrequencies of the plate are determined, numeric maximum values of displacements, forces and moments of the plate are obtained depending on the frequency of external force. It is shown that when the value of the frequency of external effect approaches the eigenfrequency, there occurs an increase in displacement, force and moment values;that testifies a gradual transition of the motion of plate points into the resonant mode.
文摘The objective of the present paper is to develop nonlinear finite element method models for predicting the weld-induced initial deflection and residual stress of plating in steel stiffened-plate structures. For this purpose, three-dimensional thermo-elastic-plastic finite element method computations are performed with varying plate thickness and weld bead length (leg length) in welded plate panels, the latter being associated with weld heat input. The finite element models are verified by a comparison with experimental database which was obtained by the authors in separate studies with full scale measurements. It is concluded that the nonlinear finite element method models developed in the present paper are very accurate in terms of predicting the weld-induced initial imperfections of steel stiffened plate structures. Details of the numerical computations together with test database are documented.
基金This work was supported by the Key R&D project of Sichuan Province(2018JY0552)National Natural Science Foundation of China(No.51,675,447).
文摘Low shape matching and high stress shielding rates between bone plate and human bone are not conducive to the primary healing of fracture.In this study,taking the fracture site of the lower one‐third of human tibia as an application case,six types of personalised Ti6Al4V tibial plates with grooved surface were designed and evaluated by reverse en-gineering and finite element analysis.The results showed that the grooved design can reduce the stress shielding rate of bone plate and promote the facture healing.Among the six types of bone plates,the‘OUT-MI’bone plate has the lowest stress shielding rate and the most uniform stress distribution.Meanwhile,with the increasing tibial load during the convalescence,the average stress and maximum axial displacement of the tibial fracture surface increased,which can effectively improve the bone regeneration in the tibial fracture area.Moreover,there was no significant difference in four-point bending performance between the‘OUT-MI’bone plate and the‘STR-BE’bone plate,indicating that the mechanical properties of this bone plate were reliable.The results provide a theoretical basis for the design of fracture fixation plates on clinical treatment.