Under the hypothesis that all the perfectly plastic stress components at a orach tip are the functions of θ only, making use of yield conditions and equilibrium equations. we derive the generally analytical expressio...Under the hypothesis that all the perfectly plastic stress components at a orach tip are the functions of θ only, making use of yield conditions and equilibrium equations. we derive the generally analytical expressions of the perfectly plastic stress field at a crack tip. Applying these generally analytical expressions to the concrete cracks, the analytical expressions of perfectly plastic stress fields at the tips of Mode Ⅰ Mode Ⅱ, Mode Ⅲ and Mixed Mode Ⅰ-Ⅱ cracks are obtained.展开更多
Under the condition that all the perfectly plastic stress components at a crack tip are the functions of only, making use of the Mises yield condition , steady-state moving equations and elastic perfectly-plastic cons...Under the condition that all the perfectly plastic stress components at a crack tip are the functions of only, making use of the Mises yield condition , steady-state moving equations and elastic perfectly-plastic constitutive equations, we derive the generally analytical expressions of perfectly plastic fields at a rapidly propagating plane-stress crack tip. Applying these generally analytical expressions to the concrete crack, we obtain the analytical expressions of perfectly plastic fields at the rapidly propagating tips of modes I and II plane-stress cracks.展开更多
在本文中,以 Hill 的塑性理论为基础,详细地讨论了理想正交各向异性弹塑性材料,平面应力条件下Ⅰ型静止裂纹尖端场解。裂纹尖端应力场不包含应力间断线,但包含弹性区。分析的结果表明(i)对于平面应力静止裂纹问题,应力场解不是唯一的,...在本文中,以 Hill 的塑性理论为基础,详细地讨论了理想正交各向异性弹塑性材料,平面应力条件下Ⅰ型静止裂纹尖端场解。裂纹尖端应力场不包含应力间断线,但包含弹性区。分析的结果表明(i)对于平面应力静止裂纹问题,应力场解不是唯一的,场解中的自由参数必须由远场条件来确定。(ii)裂纹尖端的应力、应变的奇异性,无论是各向异性材料还是各向同性材料,都是相同的。但在各向异性材料中,各向异性参数影响着应力、应变的幅度和分布。展开更多
文摘Under the hypothesis that all the perfectly plastic stress components at a orach tip are the functions of θ only, making use of yield conditions and equilibrium equations. we derive the generally analytical expressions of the perfectly plastic stress field at a crack tip. Applying these generally analytical expressions to the concrete cracks, the analytical expressions of perfectly plastic stress fields at the tips of Mode Ⅰ Mode Ⅱ, Mode Ⅲ and Mixed Mode Ⅰ-Ⅱ cracks are obtained.
文摘Under the condition that all the perfectly plastic stress components at a crack tip are the functions of only, making use of the Mises yield condition , steady-state moving equations and elastic perfectly-plastic constitutive equations, we derive the generally analytical expressions of perfectly plastic fields at a rapidly propagating plane-stress crack tip. Applying these generally analytical expressions to the concrete crack, we obtain the analytical expressions of perfectly plastic fields at the rapidly propagating tips of modes I and II plane-stress cracks.
文摘在本文中,以 Hill 的塑性理论为基础,详细地讨论了理想正交各向异性弹塑性材料,平面应力条件下Ⅰ型静止裂纹尖端场解。裂纹尖端应力场不包含应力间断线,但包含弹性区。分析的结果表明(i)对于平面应力静止裂纹问题,应力场解不是唯一的,场解中的自由参数必须由远场条件来确定。(ii)裂纹尖端的应力、应变的奇异性,无论是各向异性材料还是各向同性材料,都是相同的。但在各向异性材料中,各向异性参数影响着应力、应变的幅度和分布。