We use the latest baryon acoustic oscillation and Union 2.1 type Ia supernova data to test the cosmic opacity between different redshift regions without assuming any cosmological models. It is found that the universe ...We use the latest baryon acoustic oscillation and Union 2.1 type Ia supernova data to test the cosmic opacity between different redshift regions without assuming any cosmological models. It is found that the universe may be opaque between the redshift regions 0.35 0.44, 0.44 0.57 and 0.6-0.73 since the best fit values of cosmic opacity in these regions are positive, while a transparent universe is favored in the redshift region 0.57-0.63. However, in general, a transparent universe is still consistent with observations at the lo confidence level.展开更多
In this article, some of the main contributions to BI (Bio-Impedance) parameter-based systems for medical, biological and industrial fields, oriented to develop micro laboratory systems are summarized. These small s...In this article, some of the main contributions to BI (Bio-Impedance) parameter-based systems for medical, biological and industrial fields, oriented to develop micro laboratory systems are summarized. These small systems are enabled by the development of new measurement techniques and systems (labs), based on the impedance as biomarker. The electrical properties of the life mater allow the straightforward, low cost and usually non-invasive measurement methods to define its status or value, with the possibility to know its time evolution. This work proposes a review of bio-impedance based methods being employed to develop new LoC (Lab-on-a-Chips) systems, and some open problems identified as main research challenges, such as, the accuracy limits of measurements techniques, the role of the microelectrode-biological impedance modeling in measurements and system portability specifications demanded for many applications.展开更多
A test strategy for analog filters was proposed. The output voltage and supply current of the circuit were monitored when using the oscillation test technique. The frequency, average value, maximum value and amplitude...A test strategy for analog filters was proposed. The output voltage and supply current of the circuit were monitored when using the oscillation test technique. The frequency, average value, maximum value and amplitude of both output voltage and supply current were taken as test parameters. Tolerance bands of test parameters were analyzed. Fault detectabilities of test parameters were compared and combined, and optimal parameter sets were derived. Experimental results show that both the output voltage and supply current give significant contribution to fault detection. Considering catastrophic, single and double parametric faults, the fault coverage in testing the benchmark circuit can be raised from 90.6% for traditional voltageonly oscillation test strategy to 97.2% by monitoring both output voltage and current parameters.展开更多
The deployment of a synchrophasor-based widearea measurement system(WAMS) in a power grid largely improves the observability of power system dynamics and the operator’s real-time situational awareness for potential s...The deployment of a synchrophasor-based widearea measurement system(WAMS) in a power grid largely improves the observability of power system dynamics and the operator’s real-time situational awareness for potential stability issues. The WAMS in many power grids has successfully captured system oscillation events, e.g. poorly damped natural oscillations and forced oscillations, from time to time. To identify the root cause of an observed oscillation event for further mitigation actions, many methods have been proposed to locate the source of oscillation based on different ideas and principles. However, most methods proposed so far for locating the oscillation source in a power grid are not reliable enough for practical applications. This paper presents a comprehensive review of existing location methods, which basically fall into four major categories, plus a few other methods. Their advantages and disadvantages are discussed in detail. Some trends and challenges on the problem of oscillation source location are pointed out along with potential future research directions. Finally, a practical, general scheme for oscillation source location using available location methods is suggested and analyzed.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 11175093,11222545,11435006 and 11375092the K.C.Wong Magna Fund of Ningbo University
文摘We use the latest baryon acoustic oscillation and Union 2.1 type Ia supernova data to test the cosmic opacity between different redshift regions without assuming any cosmological models. It is found that the universe may be opaque between the redshift regions 0.35 0.44, 0.44 0.57 and 0.6-0.73 since the best fit values of cosmic opacity in these regions are positive, while a transparent universe is favored in the redshift region 0.57-0.63. However, in general, a transparent universe is still consistent with observations at the lo confidence level.
文摘In this article, some of the main contributions to BI (Bio-Impedance) parameter-based systems for medical, biological and industrial fields, oriented to develop micro laboratory systems are summarized. These small systems are enabled by the development of new measurement techniques and systems (labs), based on the impedance as biomarker. The electrical properties of the life mater allow the straightforward, low cost and usually non-invasive measurement methods to define its status or value, with the possibility to know its time evolution. This work proposes a review of bio-impedance based methods being employed to develop new LoC (Lab-on-a-Chips) systems, and some open problems identified as main research challenges, such as, the accuracy limits of measurements techniques, the role of the microelectrode-biological impedance modeling in measurements and system portability specifications demanded for many applications.
基金the National Key Basic Research and Development (973) Program of China(No. 2005CB321604)the National Natural Science Foundation of China (No. 60633060)
文摘A test strategy for analog filters was proposed. The output voltage and supply current of the circuit were monitored when using the oscillation test technique. The frequency, average value, maximum value and amplitude of both output voltage and supply current were taken as test parameters. Tolerance bands of test parameters were analyzed. Fault detectabilities of test parameters were compared and combined, and optimal parameter sets were derived. Experimental results show that both the output voltage and supply current give significant contribution to fault detection. Considering catastrophic, single and double parametric faults, the fault coverage in testing the benchmark circuit can be raised from 90.6% for traditional voltageonly oscillation test strategy to 97.2% by monitoring both output voltage and current parameters.
基金supported by the NSF CURENT Engineering Research Center(No.EEC-1041877)
文摘The deployment of a synchrophasor-based widearea measurement system(WAMS) in a power grid largely improves the observability of power system dynamics and the operator’s real-time situational awareness for potential stability issues. The WAMS in many power grids has successfully captured system oscillation events, e.g. poorly damped natural oscillations and forced oscillations, from time to time. To identify the root cause of an observed oscillation event for further mitigation actions, many methods have been proposed to locate the source of oscillation based on different ideas and principles. However, most methods proposed so far for locating the oscillation source in a power grid are not reliable enough for practical applications. This paper presents a comprehensive review of existing location methods, which basically fall into four major categories, plus a few other methods. Their advantages and disadvantages are discussed in detail. Some trends and challenges on the problem of oscillation source location are pointed out along with potential future research directions. Finally, a practical, general scheme for oscillation source location using available location methods is suggested and analyzed.