期刊文献+
共找到42篇文章
< 1 2 3 >
每页显示 20 50 100
A CLASS OF OSCILLATORY SINGULAR INTEGRALS ON TRIEBEL-LIZORKIN SPACES 被引量:3
1
作者 Jiang Liya Chen Jiecheng 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2006年第1期69-78,共10页
The boundedness on Triebel-Lizorkin spaces of oscillatory singular integral operator T in the form e^i|x|^aΩ(x)|x|^-n is studied,where a∈R,a≠0,1 and Ω∈L^1(S^n-1) is homogeneous of degree zero and satisfie... The boundedness on Triebel-Lizorkin spaces of oscillatory singular integral operator T in the form e^i|x|^aΩ(x)|x|^-n is studied,where a∈R,a≠0,1 and Ω∈L^1(S^n-1) is homogeneous of degree zero and satisfies certain cancellation condition. When kernel Ω(x' )∈Llog+L(S^n-1 ), the Fp^a,q(R^n) boundedness of the above operator is obtained. Meanwhile ,when Ω(x) satisfies L^1- Dini condition,the above operator T is bounded on F1^0,1 (R^n). 展开更多
关键词 oscillatory singular integral triebel-lizorkin space.
下载PDF
Boundedness of oscillatory singular integral with rough kernels on Triebel-Lizorkin spaces
2
作者 ZHANG Chun-jie ZHANG Yan-dan 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2013年第1期90-100,共11页
In this paper, we will prove the Triebel-Lizorkin boundedness for some oscillatory singular integrals with the kernel (x) satisfying a condition introduced by Grafakos and Stefanov. Our theorems will be proved under... In this paper, we will prove the Triebel-Lizorkin boundedness for some oscillatory singular integrals with the kernel (x) satisfying a condition introduced by Grafakos and Stefanov. Our theorems will be proved under various conditions on the phase function, radial and nonradial. Since the L p boundedness of these operators is not complete yet, the theorems extend many known results. 展开更多
关键词 oscillatory singular integral triebel-lizorkin space rough kernel phase function.
下载PDF
NON-CONVOLUTION TYPE OSCILLATORY SINGULAR INTEGRAL ON HARDY SPACE HK_p(R^n) 被引量:1
3
作者 Chen Wengu Yang Dachun (Beijing Normal University China) 《Analysis in Theory and Applications》 1997年第2期27-36,共10页
The authors considered non-convolution type oscillatory singular integral operators with real-analytic phases. A uniform boundedness from HKp to Hp of such operators is established. The result is false for general C p... The authors considered non-convolution type oscillatory singular integral operators with real-analytic phases. A uniform boundedness from HKp to Hp of such operators is established. The result is false for general C phases. 展开更多
关键词 R~n NON-CONVOLUTION TYPE oscillatory singular integral ON HARDY space HK_p Math real II HK
下载PDF
BOUNDEDNESS OF OSCILLATORY SINGULAR INTEGRALS ON HK_P SPACES 被引量:1
4
作者 Hu Guoen and Yang Dachun (Beijing Normal University, China) 《Analysis in Theory and Applications》 1997年第2期20-26,共7页
In this paper, we consider the HK boundedness for certain oscillatory singular integral operators.
关键词 MATH BOUNDEDNESS OF oscillatory singular integralS ON HK_P spaceS HK
下载PDF
A NOTE TO OSCILLATORY SINGULAR INTEGRALS ON HERZ-TYPE SPACES
5
作者 G.Sampson XuJingshi 《Analysis in Theory and Applications》 2003年第1期37-46,共10页
In this paper, we want to improve our previous results. We prove that some oscillatory strong singular integral operators of non-convolution type with non-polynomial phases are bounded from Herz-type Hardy spaces to H... In this paper, we want to improve our previous results. We prove that some oscillatory strong singular integral operators of non-convolution type with non-polynomial phases are bounded from Herz-type Hardy spaces to Herz spaces and from Hardy spaces associated with the Beurling algebras to the Beurling algebras in higher dimensions. 展开更多
关键词 oscillatory singular integral PHASE Lebesgue space Herz space Beurling algebra Hardy space
下载PDF
Boundedness of Multilinear Oscillatory Singular Integral on Weighted Weak Hardy Spaces
6
作者 Yali Pan Changwen Li 《Analysis in Theory and Applications》 CSCD 2015年第4期373-380,共8页
In this paper, by using the atomic decomposition of the weighted weak Hardy space WH;(R;), the authors discuss a class of multilinear oscillatory singular integrals and obtain their boundedness from the weighted wea... In this paper, by using the atomic decomposition of the weighted weak Hardy space WH;(R;), the authors discuss a class of multilinear oscillatory singular integrals and obtain their boundedness from the weighted weak Hardy space WH;(R;) to the weighted weak Lebesgue space WL;(R;) for ω∈A;(R;). 展开更多
关键词 Multilinear oscillatory singular integral A1(Rn) weighted weak Hardy space
下载PDF
A LIPSCHITZ ESTIMATE FOR MULTILINEAR OSCILLATORY SINGULAR INTEGRALS WITH ROUGH KERNELS 被引量:2
7
作者 伍火熊 《Acta Mathematica Scientia》 SCIE CSCD 2005年第4期761-770,共10页
In this paper, for the multilinear oscillatory singular integral operators TA1,A2,...Ar defined by TA1,A2,...,Arf(x) = p.v.∫R^n ^e^iP(x,y)Ω(x - y)/|x - y|^n+M r∏s=1 Rms+1(As;x,y)f(y)dy, n≥2 where P... In this paper, for the multilinear oscillatory singular integral operators TA1,A2,...Ar defined by TA1,A2,...,Arf(x) = p.v.∫R^n ^e^iP(x,y)Ω(x - y)/|x - y|^n+M r∏s=1 Rms+1(As;x,y)f(y)dy, n≥2 where P(x,y) is a nontrivial and real-valued polynomial defined on R^n×R^n,Ω(x) is homogeneous of degree zero on R^n, As(x) has derivatives of order ms in ∧βs (0〈βs〈 1), Rms+1 (As;x, y) denotes the (ms+1)-st remainder of the Taylor series of As at x expended about y (s = 1, 2, ..., r), M = ∑s^r =1 ms, the author proves that if 0 〈=β1=∑s^r=1 βs〈1,and Ω∈L^q(S^n-1) for some q 〉 1/(1 -β), then for any p∈(1, ∞), and some appropriate 0 〈β〈 1, TA1,A2,...,Ar, is bounded on L^P(R^n). 展开更多
关键词 Multilinear operator oscillatory singular integral Lipschitz spaces rough kernel
下载PDF
On the Boundedness of Rough Oscillatory Singular Integrals on Triebel-Lizorkin Spaces
8
作者 Leslie CHENG Yi Biao PAN 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2011年第10期1881-1898,共18页
We obtain appropriate sharp bounds on Triebel-Lizorkin spaces for rough oscillatory inte- grals with polynomial phase. By using these bounds and using an extrapolation argument we obtain some new and previously known ... We obtain appropriate sharp bounds on Triebel-Lizorkin spaces for rough oscillatory inte- grals with polynomial phase. By using these bounds and using an extrapolation argument we obtain some new and previously known results for oscillatory integrals under very weak size conditions on the kernel functions. 展开更多
关键词 oscillatory singular integral rough kernel Orlicz spaces Block spaces EXTRAPOLATION triebel-lizorkin spaces
原文传递
A Class of Oscillatory Singular Integrals with Hardy Kernels on Triebel-Lizorkin Spaces and Besov Spaces
9
作者 Yao Ming NIU Shuang Ping TAO 《Journal of Mathematical Research and Exposition》 CSCD 2011年第3期509-520,共12页
In this paper,the boundedness is obtained on the Triebel-Lizorkin spaces and the Besov spaces for a class of oscillatory singular integrals with Hardy kernels.
关键词 oscillatory singular integrals triebel-lizorkin spaces Besov spaces Hardy kernel.
下载PDF
Behaviour of an Oscillatory Singular Integral on Weighted Local Hardy Spaces
10
作者 Chen Liyuan (Department of Economics,Hangszhou University,Hangzhou 310028,China)Sun Qiyu (Center for Mathematical Sciences,Zhejiang University,Hangzhou 310027,China) 《Acta Mathematica Sinica,English Series》 SCIE CSCD 1997年第3期305-320,共16页
The boundedness on weighted local Hardy spaces h<sup>1,p</sup><sub>w</sub> of the oscillatory singular integral Tf(x)=∫<sub>R</sub><sup>n</sup> e<sup>iQ(x,y)&... The boundedness on weighted local Hardy spaces h<sup>1,p</sup><sub>w</sub> of the oscillatory singular integral Tf(x)=∫<sub>R</sub><sup>n</sup> e<sup>iQ(x,y)</sup>K(x,y)f(y)dy is considered when Q(x,y)=P(x-y)for some real-valued polynomial P with its degree not less than two.Also a sufficient and necessary condition on polynomial Q on R<sup>n</sup> × R<sup>n</sup> such that T maps h<sup>1,p</sup><sub>w</sub> to the weighted integrable function space L<sup>1</sup><sub>w</sub> is found. 展开更多
关键词 oscillatory singular integral Weighted local Hardy spaces Muckenhoupt weight
原文传递
Some Oscillatory Singular Integrals on Herz-type Spaces (Ⅱ)
11
作者 Gary Sampson 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2002年第3期365-376,共12页
In this paper, the authors prove that some oscillatory singular integral operators of non-convolution type with non-polynomial phases are bounded from the Herz-type Hardy spaces to the Herz spaces and from the Hardy s... In this paper, the authors prove that some oscillatory singular integral operators of non-convolution type with non-polynomial phases are bounded from the Herz-type Hardy spaces to the Herz spaces and from the Hardy spaces associated with the Beurling algebras to the Beurling algebras in higher dimensions, even though it is well-known that these operators are not bounded from the Hardy space H1(Rn) into the Lebesgue spaceL1(Rn). 展开更多
关键词 oscillatory singular integral PHASE Lebesgue space Herz space Beurling algebra Hardy space
全文增补中
BOUNDEDNESS OF PARABOLIC SINGULAR INTEGRALS AND MARCINKIEWICZ INTEGRALS ON TRIEBEL-LIZORKIN SPACES 被引量:3
12
作者 Yaoming Niu Shuangping Tao 《Analysis in Theory and Applications》 2011年第1期59-75,共17页
In this paper, we obtain the boundedness of the parabolic singular integral operator T with kernel in L(log L) 1/γ,(Sn- 1 ) on Triebel-Lizorkin spaces. Moreover, we prove the boundedness of a class of Marcinkiewi... In this paper, we obtain the boundedness of the parabolic singular integral operator T with kernel in L(log L) 1/γ,(Sn- 1 ) on Triebel-Lizorkin spaces. Moreover, we prove the boundedness of a class of Marcinkiewicz integrals μΩ,q (f) from ||f||Fp^oq(Rn) into Lp (Rn). 展开更多
关键词 parabolic singular integral triebel-lizorkin space Marcinkiewica integral rough kernel
下载PDF
A NOTE ON SINGULAR INTEGRALS WITH DOMINATING MIXED SMOOTHNESS IN TRIEBEL-LIZORKIN SPACES
13
作者 Hung Viet LE 《Acta Mathematica Scientia》 SCIE CSCD 2014年第4期1331-1344,共14页
Let h, be a measurable function defined on R^+ ×R^+. Let Ω ∈ L(log L^+)^υq (S^n1-1 × S^n2-1) (1≤ υq ≤ 2) be homogeneous of degree zero and satisfy certain cancellation conditions. We show that... Let h, be a measurable function defined on R^+ ×R^+. Let Ω ∈ L(log L^+)^υq (S^n1-1 × S^n2-1) (1≤ υq ≤ 2) be homogeneous of degree zero and satisfy certain cancellation conditions. We show that the singular integral Tf(x1,x2)=p.v.∫∫R^n1+n2 Ω(y′1,y′2)h(|y1|,|y2|)/|y1|^n1|y2|^n2 f(x1-y1,x2-y2)dy1dy2maps from Sp,q^α1,α2F(R^n1×R^n2)boundedly to itself for 1 〈 p, q 〈 ∞, α1, α2 ∈R. 展开更多
关键词 singular integrals Marcinkiewicz integrals mixed smoothness triebel-lizorkin spaces
下载PDF
(L^p,L^q) Estimates for Multilinear Oscillatory Singular Integralswith Smooth Phases
14
作者 ShanZhenLU GuiPingTAO 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2003年第4期645-654,共10页
In this paper, the authors establish the weighted (L^p, L^q) estimates for aclass of multilinear oscillatory singular integrals with smooth phases. Certain endpoint estimatesare also considered.
关键词 multilinear oscillatory singular integral Lebesgue space weight BMO
原文传递
Boundedness of Marcinkiewicz integral on Triebel-Lizorkin spaces 被引量:5
15
作者 ZHANG Chun-jie CHEN Jie-cheng 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2010年第1期48-54,共7页
In this paper, we prove the Triebel-Lizorkin boundedness for the Marcinkiewicz integral with rough kernel. The method we apply here enables us to consider more general operators.
关键词 Marcinkiewicz integral triebel-lizorkin spaces rough kernel singular integral.
下载PDF
Certain averaging operators on Triebel-Lizorkin spaces
16
作者 ZHAO Jun-yan PAN Ya-li 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2022年第4期546-562,共17页
In this article,we study the boundedness properties of the averaging operator S_(t)^(γ) on Triebel-Lizorkin spaces F_(p,q)^(α)(R^(n))for various p,q.As an application,we obtain the norm convergence rate for S_(t)^(... In this article,we study the boundedness properties of the averaging operator S_(t)^(γ) on Triebel-Lizorkin spaces F_(p,q)^(α)(R^(n))for various p,q.As an application,we obtain the norm convergence rate for S_(t)^(γ)(f)on Triebel-Lizorkin spaces and the relation between the smoothness imposed on functions and the rate of norm convergence of S_(t)^(γ) is given. 展开更多
关键词 spherical mean triebel-lizorkin spaces norm convergence saturation of approximation Bessel function wave operator oscillatory integrals
下载PDF
Boundedness for Parabolic Singular Integral with Rough Kernels and Its Commutators on Triebel-Lizorkin Spaces 被引量:8
17
作者 Shuang Ping TAO Yao Ming NIU 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2011年第9期1783-1802,共20页
In this paper, the authors give the boundedness on Triebel-Lizorkin spaces for the parabolic singular integral with rough kernel and its commutator.
关键词 Parabolic singular integral triebel-lizorkin spaces COMMUTATOR parabolic BMO
原文传递
Singular integral operators on product Triebel-Lizorkin spaces 被引量:4
18
作者 Chen JieCheng Wang Hui 《Science China Mathematics》 SCIE 2010年第2期336-347,共12页
In this paper, we consider the rough singular integral operators on product Triebel-Lizorkin spaces and prove certain boundedness properties on the Triebel-Lizorkin spaces. We also use the same method to study the fra... In this paper, we consider the rough singular integral operators on product Triebel-Lizorkin spaces and prove certain boundedness properties on the Triebel-Lizorkin spaces. We also use the same method to study the fractional integral operator and the Littlewood-Paley functions. The results extend some known results. 展开更多
关键词 singular integral OPERATOR triebel-lizorkin space PRODUCT spaceS
原文传递
Singular Integrals and Weighted Triebel-Lizorkin and Besov Spaces of Arbitrary Number of Parameters 被引量:7
19
作者 Guo Zhen LU Yue Ping ZHU 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2013年第1期39-52,共14页
Though the theory of Triebel-Lizorkin and Besov spaces in one-parameter has been developed satisfactorily, not so much has been done for the multiparameter counterpart of such a theory. In this paper, we introduce the... Though the theory of Triebel-Lizorkin and Besov spaces in one-parameter has been developed satisfactorily, not so much has been done for the multiparameter counterpart of such a theory. In this paper, we introduce the weighted Triebel-Lizorkin and Besov spaces with an arbitrary number of parameters and prove the boundedness of singular integral operators on these spaces using discrete Littlewood-Paley theory and Calderon's identity. This is inspired by the work of discrete Littlewood- Paley analysis with two parameters of implicit dilations associated with the flag singular integrals recently developed by Han and Lu [12]. Our approach of derivation of the boundedness of singular integrals on these spaces is substantially different from those used in the literature where atomic decomposition on the one-parameter Triebel-Lizorkin and Besov spaces played a crucial role. The discrete Littlewood-Paley analysis allows us to avoid using the atomic decomposition or deep Journe's covering lemma in multiparameter setting. 展开更多
关键词 singular integrals multiparameter weighted triebel-lizorkin spaces multiparameter weighted Besov spaces discrete Littlewood-Paley analysis discrete Calderon identity vector-valued maximal functions
原文传递
Multi-parameter Triebel-Lizorkin and Besov Spaces Associated with Flag Singular Integrals 被引量:4
20
作者 Yong DING Guo Zhen LU Bo Lin MA 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2010年第4期603-620,共18页
Though the theory of one-parameter Triebel-Lizorkin and Besov spaces has been very well developed in the past decades, the multi-parameter counterpart of such a theory is still absent. The main purpose of this paper i... Though the theory of one-parameter Triebel-Lizorkin and Besov spaces has been very well developed in the past decades, the multi-parameter counterpart of such a theory is still absent. The main purpose of this paper is to develop a theory of multi-parameter Triebel-Lizorkin and Besov spaces using the discrete Littlewood-Paley-Stein analysis in the setting of implicit multi-parameter structure. It is motivated by the recent work of Han and Lu in which they established a satisfactory theory of multi-parameter Littlewood-Paley-Stein analysis and Hardy spaces associated with the flag singular integral operators studied by Muller-Ricci-Stein and Nagel-Ricci-Stein. We also prove the boundedness of flag singular integral operators on Triebel-Lizorkin space and Besov space. Our methods here can be applied to develop easily the theory of multi-parameter Triebel-Lizorkin and Besov spaces in the pure product setting. 展开更多
关键词 flag singular integrals multiparameter triebel-lizorkin spaces discrete Calderdn repro- ducing formulas discrete Littlewood-Paley-Stein analysis
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部