In this article, we will show that the super-bihamiltonian structures of the Kuper- KdV equation in [3], the Kuper-CH equation in [17, 18] and the super-HS equation in [11, 16, 19] can be obtained by applying a super-...In this article, we will show that the super-bihamiltonian structures of the Kuper- KdV equation in [3], the Kuper-CH equation in [17, 18] and the super-HS equation in [11, 16, 19] can be obtained by applying a super-bihamiltonian reduction of different super-Poisson pairs defined on the loop algebra of osp(1|2).展开更多
In this paper N = 4 supersymmetry of generalized Morse oscillators in one dimension is studied. Both bound states and scattering states of its four superpartner Hamiltonians are analyzed by using unitary irreducible r...In this paper N = 4 supersymmetry of generalized Morse oscillators in one dimension is studied. Both bound states and scattering states of its four superpartner Hamiltonians are analyzed by using unitary irreducible representations of the noncompact Lie algebra su(1,1). The spectrum-generating algebra governing the Hamiltonian of the N = 4 supersymmetric Morse oscillator is shown to be connected with the realization of Lie superalgebra osp(1,2)or B(0,1) in terms of the variables of a supersymmetric two-dimensional harmonic oscillator.展开更多
基金partially supported by"PCSIRT"the Fundamental Research Funds for the Central Universities(WK0010000024)+3 种基金NCET-13-0550SRF for ROCS,SEM and OATF,USTCNSFC(11271345,11371138)Natural Science Foundation of Anhui Province and Outstanding Young Talent Funds of Anhui Province(2013SQRL092ZD)
文摘In this article, we will show that the super-bihamiltonian structures of the Kuper- KdV equation in [3], the Kuper-CH equation in [17, 18] and the super-HS equation in [11, 16, 19] can be obtained by applying a super-bihamiltonian reduction of different super-Poisson pairs defined on the loop algebra of osp(1|2).
文摘In this paper N = 4 supersymmetry of generalized Morse oscillators in one dimension is studied. Both bound states and scattering states of its four superpartner Hamiltonians are analyzed by using unitary irreducible representations of the noncompact Lie algebra su(1,1). The spectrum-generating algebra governing the Hamiltonian of the N = 4 supersymmetric Morse oscillator is shown to be connected with the realization of Lie superalgebra osp(1,2)or B(0,1) in terms of the variables of a supersymmetric two-dimensional harmonic oscillator.