Adipose derived stem cells represent a readily available source of adult stem cells for various biomedical applications. In this study, the proliferation and osteogenic differentiation potential of lanthanum nitrate(...Adipose derived stem cells represent a readily available source of adult stem cells for various biomedical applications. In this study, the proliferation and osteogenic differentiation potential of lanthanum nitrate(La3+) on human adipose derived mesenchymal stem cells(hADSCs) were investigated for the first time and compared with that of dexamethasone(Dex). Our results provided evidence that La3+ at 50 μmol/L concentration promoted proliferation of hADSCs upto 2.4 fold when treated for 21 d in DMEM medium. Treatment of hADSCs with La3+ containing osteogenic induction medium(α-MEM with ascorbic acid and β-glycerophosphate) for 7 d resulted in higher calcium deposition than that in the presence of Dex(0.1 μmol/L) as shown by Alizarin red S and von Kossa staining. Scanning electron micrographs also showed more extracellular matrix mineralization in the presence of La3+. After 7 d of treatment with La3+(10 μmol/L) the expression of RunX2, osteopontin(OP) and osteocalcin(OC) increased 3.4, 5.5 and 2.7 fold respectively. Our results provided evidence that in the presence of La3+ osteogenic differentiation occurred earlier than that in the presence of Dex.展开更多
基金Project supported by CSIR,New Delhi Provided through the CSIR-network Project-Advanced Drug Delivery System(ADD-CSC0302)
文摘Adipose derived stem cells represent a readily available source of adult stem cells for various biomedical applications. In this study, the proliferation and osteogenic differentiation potential of lanthanum nitrate(La3+) on human adipose derived mesenchymal stem cells(hADSCs) were investigated for the first time and compared with that of dexamethasone(Dex). Our results provided evidence that La3+ at 50 μmol/L concentration promoted proliferation of hADSCs upto 2.4 fold when treated for 21 d in DMEM medium. Treatment of hADSCs with La3+ containing osteogenic induction medium(α-MEM with ascorbic acid and β-glycerophosphate) for 7 d resulted in higher calcium deposition than that in the presence of Dex(0.1 μmol/L) as shown by Alizarin red S and von Kossa staining. Scanning electron micrographs also showed more extracellular matrix mineralization in the presence of La3+. After 7 d of treatment with La3+(10 μmol/L) the expression of RunX2, osteopontin(OP) and osteocalcin(OC) increased 3.4, 5.5 and 2.7 fold respectively. Our results provided evidence that in the presence of La3+ osteogenic differentiation occurred earlier than that in the presence of Dex.