A new concept generalized(h,m)−preinvex function on Yang’s fractal sets is proposed.Some Ostrowski’s type inequalities with two parameters for generalized(h,m)−preinvex function are established,where three local fra...A new concept generalized(h,m)−preinvex function on Yang’s fractal sets is proposed.Some Ostrowski’s type inequalities with two parameters for generalized(h,m)−preinvex function are established,where three local fractional inequalities involving generalized midpoint type,trapezoid type and Simpson type are derived as consequences.Furthermore,as some applications,special means inequalities and numerical quadratures for local fractional integrals are discussed.展开更多
针对一阶导数有界的可微函数,利用积分恒等式和不等式∫_(a)^( b) K(t)(f′(t)-c)dt≤sup _(t∈(a,b))|f′(t)-c|∫_(a)^( b)|K(t)|dt,以及引入参数求最值的方法,建立了梯形不等式,加强了已有文献中的梯形不等式。用同样方法将结果推广...针对一阶导数有界的可微函数,利用积分恒等式和不等式∫_(a)^( b) K(t)(f′(t)-c)dt≤sup _(t∈(a,b))|f′(t)-c|∫_(a)^( b)|K(t)|dt,以及引入参数求最值的方法,建立了梯形不等式,加强了已有文献中的梯形不等式。用同样方法将结果推广到Ostrowski型不等式。展开更多
基金Supported by the National Natural Science Foundation of China(Grant No.11801342)the Natural Science Foundation of Shaanxi Province(Grant No.2023-JC-YB-043).
文摘A new concept generalized(h,m)−preinvex function on Yang’s fractal sets is proposed.Some Ostrowski’s type inequalities with two parameters for generalized(h,m)−preinvex function are established,where three local fractional inequalities involving generalized midpoint type,trapezoid type and Simpson type are derived as consequences.Furthermore,as some applications,special means inequalities and numerical quadratures for local fractional integrals are discussed.
文摘针对一阶导数有界的可微函数,利用积分恒等式和不等式∫_(a)^( b) K(t)(f′(t)-c)dt≤sup _(t∈(a,b))|f′(t)-c|∫_(a)^( b)|K(t)|dt,以及引入参数求最值的方法,建立了梯形不等式,加强了已有文献中的梯形不等式。用同样方法将结果推广到Ostrowski型不等式。