The community characteristics of natural secondary forests on the north slope of Changbai Mountain after selective cutting were investigated, and the dynamics of arborous species diversity during the restoration perio...The community characteristics of natural secondary forests on the north slope of Changbai Mountain after selective cutting were investigated, and the dynamics of arborous species diversity during the restoration period of 28 years were studied. The results showed that the arborous species richness (S) had little change and kept the range of 18-22 all along, the Simpson index (D) of the secondary layer and regeneration layer and whole stand had similar trends of change, but that of the canopy layer descended slowly in initial 15 years and had little change later, and the change of diversity index was not obvious and the Shannon-Wiener index (H? fluctuated in a very small scopes (H±10%).展开更多
For a long time,forestry primarily had industrial goals.Volume of wood production was the main criterion of forestry efficacy,and thus rapid-growing arboreal species were cultivated in natural forests.More recently,na...For a long time,forestry primarily had industrial goals.Volume of wood production was the main criterion of forestry efficacy,and thus rapid-growing arboreal species were cultivated in natural forests.More recently,nature protection has become one of forestry's goals.Unfortunately,some introduced,rapid-growing species became aggressive components of natural ecological systems during the interim.In this paper,we first describe a method that we developed to categorize aggressiveness of invasive arboreal plants in natural forest ecosystems of Kazakhstan.We then apply this new scheme to monitoring data of invasive arboreal plants to provide an insight into the invasion potential of different species in the fruit forests of Southeast Kazakhstan.展开更多
A linear forest is a forest whose components are paths. The linear arboricity la (G) of a graph G is the minimum number of linear forests which partition the edge set E(G) of G. The Cartesian product G□H of two g...A linear forest is a forest whose components are paths. The linear arboricity la (G) of a graph G is the minimum number of linear forests which partition the edge set E(G) of G. The Cartesian product G□H of two graphs G and H is defined as the graph with vertex set V(G□H) = {(u, v)| u ∈V(G), v∈V(H) } and edge set E(G□H) = { ( u, x) ( v, Y)|u=v and xy∈E(H), or uv∈E(G) and x=y}. Let Pm and Cm,, respectively, denote the path and cycle on m vertices and K, denote the complete graph on n vertices. It is proved that (Km□Pm)=[n+1/2]for m≥2,la(Km□Cm)=[n+2/2],and la(Km□Km)=[n+m-1/2]. The methods to decompose these graphs into linear forests are given in the proofs. Furthermore, the linear arboricity conjecture is true for these classes of graphs.展开更多
In this paper, secondary forest of Pinus massoniana , coniferous-broad-leaved mixed forest and broad-leaved evergreen forest were taken as research objects, to explore carbon reserve of arbor layer and its spatial dis...In this paper, secondary forest of Pinus massoniana , coniferous-broad-leaved mixed forest and broad-leaved evergreen forest were taken as research objects, to explore carbon reserve of arbor layer and its spatial distribution characteristics. At different succession stages, the sequence of organic carbon content in each organ was secondary forest of P. massoniana > coniferous-broad-leaved mixed forest> broad-leaved evergreen forest. Carbon reserve of arbor layer was the highest in broad-leaved evergreen forest, which was 129.34 t/hm 2, followed by coniferous-broad-leaved mixed forest (95.83 t/hm 2), and the minimum was 85.27 t/hm 2 in secondary forest of P. massoniana . In each stand type, the sequence of carbon reserve of each organ in arbor layer was trunk>root>branch>leaf>bark. Carbon reserve of arbor layer mainly concentrated in trunk, and the proportion to carbon reserve of arbor layer declined from secondary forest of P. massoniana to broad-leaved evergreen forest, while it had increasing relationship in root. In secondary forest of P. massoniana , coniferous-broad-leaved mixed forest and broad-leaved evergreen forest, individual with the diameter more than 20 cm accounted for the majority of carbon reserve in the arbor layer.展开更多
In this paper, the Pinus massoniana forest in the early stage of succession, the coniferous broad-leaved mixed forest in the middle stage of succession, and the evergreen broad-leaved forest in the late stage of succe...In this paper, the Pinus massoniana forest in the early stage of succession, the coniferous broad-leaved mixed forest in the middle stage of succession, and the evergreen broad-leaved forest in the late stage of succession were studied, and the biomass and its spatial distribution characteristics of the tree layer in different succession stages of the ecosystem were discussed. The results showed that the biomass of the arbor layer was the highest in the evergreen broad-leaved forest, which was 292.51 t/ hm2, followed by the coniferous and broad-leaved mixed forest, which was 206.87 t/hm2, and the Pinus massoniana forest, which was 171.76 t/hm2. The biomass of trunks accounted for the largest proportion in the total biomass of the arbor layer, which reduced from the Pinus massoniana forest to the evergreen broad-leaved forest. The proportion of the biomass of roots in the total biomass of the arbor layer increased from the Pinus massoniana forest to the evergreen broad-leaved forest. The biomass of the diameter class above 20 cm in the Pinus massoniana forest, the coniferous and broad-leaved mixed forest and the evergreen broad-leaved forest accounted for a large proportion of total biomass.展开更多
基金This research was supported by Institute of Shenyang Applied Ecology CAS (SCXMS0101),National Key Technologies R&D Program (NKTRDP. 2002BA516A20) and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, Ministry of Education
文摘The community characteristics of natural secondary forests on the north slope of Changbai Mountain after selective cutting were investigated, and the dynamics of arborous species diversity during the restoration period of 28 years were studied. The results showed that the arborous species richness (S) had little change and kept the range of 18-22 all along, the Simpson index (D) of the secondary layer and regeneration layer and whole stand had similar trends of change, but that of the canopy layer descended slowly in initial 15 years and had little change later, and the change of diversity index was not obvious and the Shannon-Wiener index (H? fluctuated in a very small scopes (H±10%).
文摘For a long time,forestry primarily had industrial goals.Volume of wood production was the main criterion of forestry efficacy,and thus rapid-growing arboreal species were cultivated in natural forests.More recently,nature protection has become one of forestry's goals.Unfortunately,some introduced,rapid-growing species became aggressive components of natural ecological systems during the interim.In this paper,we first describe a method that we developed to categorize aggressiveness of invasive arboreal plants in natural forest ecosystems of Kazakhstan.We then apply this new scheme to monitoring data of invasive arboreal plants to provide an insight into the invasion potential of different species in the fruit forests of Southeast Kazakhstan.
基金The National Natural Science Foundation of China(No.10971025)
文摘A linear forest is a forest whose components are paths. The linear arboricity la (G) of a graph G is the minimum number of linear forests which partition the edge set E(G) of G. The Cartesian product G□H of two graphs G and H is defined as the graph with vertex set V(G□H) = {(u, v)| u ∈V(G), v∈V(H) } and edge set E(G□H) = { ( u, x) ( v, Y)|u=v and xy∈E(H), or uv∈E(G) and x=y}. Let Pm and Cm,, respectively, denote the path and cycle on m vertices and K, denote the complete graph on n vertices. It is proved that (Km□Pm)=[n+1/2]for m≥2,la(Km□Cm)=[n+2/2],and la(Km□Km)=[n+m-1/2]. The methods to decompose these graphs into linear forests are given in the proofs. Furthermore, the linear arboricity conjecture is true for these classes of graphs.
基金Sponsored by Forestry Science and Technology Plan of Hunan Province(XLK201806,XLK201925)National Forestry Science and Technology Development Project(KJZXSA2018011,KJZXSA2019009)Operational Subsidy Project of National Forestry Science and Technology Innovation Platform(2019132068)
文摘In this paper, secondary forest of Pinus massoniana , coniferous-broad-leaved mixed forest and broad-leaved evergreen forest were taken as research objects, to explore carbon reserve of arbor layer and its spatial distribution characteristics. At different succession stages, the sequence of organic carbon content in each organ was secondary forest of P. massoniana > coniferous-broad-leaved mixed forest> broad-leaved evergreen forest. Carbon reserve of arbor layer was the highest in broad-leaved evergreen forest, which was 129.34 t/hm 2, followed by coniferous-broad-leaved mixed forest (95.83 t/hm 2), and the minimum was 85.27 t/hm 2 in secondary forest of P. massoniana . In each stand type, the sequence of carbon reserve of each organ in arbor layer was trunk>root>branch>leaf>bark. Carbon reserve of arbor layer mainly concentrated in trunk, and the proportion to carbon reserve of arbor layer declined from secondary forest of P. massoniana to broad-leaved evergreen forest, while it had increasing relationship in root. In secondary forest of P. massoniana , coniferous-broad-leaved mixed forest and broad-leaved evergreen forest, individual with the diameter more than 20 cm accounted for the majority of carbon reserve in the arbor layer.
基金Sponsored by Forestry Science and Technology Plan of Hunan Province(XLK201925,XLK201806)National Forestry Science and Technology Development Project(KJZXSA2018011)Operational Subsidy Project of National Forestry Science and Technology Innovation Platform(2018-LYPT-DW-064)
文摘In this paper, the Pinus massoniana forest in the early stage of succession, the coniferous broad-leaved mixed forest in the middle stage of succession, and the evergreen broad-leaved forest in the late stage of succession were studied, and the biomass and its spatial distribution characteristics of the tree layer in different succession stages of the ecosystem were discussed. The results showed that the biomass of the arbor layer was the highest in the evergreen broad-leaved forest, which was 292.51 t/ hm2, followed by the coniferous and broad-leaved mixed forest, which was 206.87 t/hm2, and the Pinus massoniana forest, which was 171.76 t/hm2. The biomass of trunks accounted for the largest proportion in the total biomass of the arbor layer, which reduced from the Pinus massoniana forest to the evergreen broad-leaved forest. The proportion of the biomass of roots in the total biomass of the arbor layer increased from the Pinus massoniana forest to the evergreen broad-leaved forest. The biomass of the diameter class above 20 cm in the Pinus massoniana forest, the coniferous and broad-leaved mixed forest and the evergreen broad-leaved forest accounted for a large proportion of total biomass.