This study focuses on variations in the hysteretic behavior of buckling-restrained braces(BRBs)configured with or without out-of-plane eccentricity under cyclic loading.Quasi-static experiments and numerical simulatio...This study focuses on variations in the hysteretic behavior of buckling-restrained braces(BRBs)configured with or without out-of-plane eccentricity under cyclic loading.Quasi-static experiments and numerical simulations were carried out on concentrically and eccentrically loaded BRB specimens to investigate the mechanical properties,energy dissipation performance,stress distribution,and high-order deformation pattern.The experimental and numerical results showed that compared to the concentrically loaded BRBs,the stiffness,yield force,cumulated plastic ductility(CPD)coefficient,equivalent viscous damping coefficient and energy dissipation decreased,and the yield displacement and compression strength adjustment factor increased for the eccentrically loaded BRBs.With the existence of the out-of-plane eccentricity,the initial yield position changes from the yield segment to the junction between the yield segment and transition segment under a tensile load,while the initial high-order buckling pattern changes from a first-order C-shape to a secondorder S-shape under a compressive load.展开更多
The out-of-plane fold is a common defect of composite materials during the manufacturing process and will greatly affect the compressive strength as well as the service life.Making it of great importance to investigat...The out-of-plane fold is a common defect of composite materials during the manufacturing process and will greatly affect the compressive strength as well as the service life.Making it of great importance to investigate the influence of out-of-plane defects to the compressive strength of laminate plates of composite materials,and to understand the patterns of defect evolution.Therefore,the strip method is applied in this article to create out-of-plane defects with different aspect ratios in laminated plates of composite materials,and a compressive performance test is conducted to quantify the influence of out-of-plane defects.The result shows that the compressive strength becomes weaker with a greater aspect ratio.When the highest aspect ratio is set to 0.12 in the experiment,the compressive strength reduces by 36.1%.Then we establish a 3-D progressive damage model based on continuum mechanics,and write it into the UMAT subroutine together with the 3-D Hashin criteria and the non-linear degradation criteria of materials.3-D solid modeling is performed for the samples with an out-of-plane fold based on ABAQUS,and progressive damage analysis is conducted to acquire the inplane evolution process of initial failure strength with different laminates.The experimental results agree well with the simulation results.展开更多
The aim of this work is to study the stress distributions and the location of hot spots stress in the vicinity of the intersection lines of the tubular elements of the tubular TY-joints.Using the finite element models...The aim of this work is to study the stress distributions and the location of hot spots stress in the vicinity of the intersection lines of the tubular elements of the tubular TY-joints.Using the finite element models,we analyze the effects of geometrical parameters on the stress concentration factor in the case of in-plane bending and out-of-plane bending loads,around the weld toe of the tubular joints.Our results reveal the location of the maximum stress concentration factor at the heel or toe in the case of in-plane bending loads and at the saddle point in the case of out-of-plane bending loads.Six parametric equations are established and used to calculate the stress concentration factor at critical locations using the non-linear regression method.The results obtained from the finite element analysis are close to the results of the parametric equations and the experimental data from the previous work.展开更多
The two coupled governing differential equations for the out-of-plane vibrations of non-uniform beams with variable curvature are derived via the Hamilton’s principle.These equations are expressed in terms of flexura...The two coupled governing differential equations for the out-of-plane vibrations of non-uniform beams with variable curvature are derived via the Hamilton’s principle.These equations are expressed in terms of flexural and torsional displacements simultaneously.In this study,the analytical method is proposed.Firstly,two physical parameters are introduced to simplify the analysis.One derives the explicit relations between the flexural and the torsional displacements which can also be used to reduce the difficulty in experimental measurements.Based on the relation,the two governing characteristic differential equations with variable coefficients can be uncoupled into a sixth-order ordinary differential equation in terms of the flexural displacement only.When the material and geometric properties of the beam are in arbitrary polynomial forms,the exact solutions with regard to the outof-plane vibrations of non-uniform beams with variable curvature can be obtained by the recurrence formula.In addition,the mode transition mechanism is revealed and the influence of several parameters on the vibration of the non-uniform beam with variable curvature is explored.展开更多
Soil-structure interaction (SSI) of a building and shear wall above a foundation in an elastic half-space has long been an important research subject for earthquake engineers and strong-motion seismologists. Numerou...Soil-structure interaction (SSI) of a building and shear wall above a foundation in an elastic half-space has long been an important research subject for earthquake engineers and strong-motion seismologists. Numerous papers have been published since the early 1970s; however, very few of these papers have analytic closed-form solu- tions available. The soil-structure interaction problem is one of the most classic problems connecting the two dis- ciplines of earthquake engineering and civil engineering. The interaction effect represents the mechanism of energy transfer and dissipation among the elements of the dynamic system, namely the soil subgrade, foundation, and super- structure. This interaction effect is important across many structure, foundation, and subgrade types but is most pro- nounced when a rigid superstructure is founded on a rela- tively soft lower foundation and subgrade. This effect may only be ignored when the subgrade is much harder than a flexible superstructure: for instance a flexible moment frame superstructure founded on a thin compacted soil layer on top of very stiff bedrock below. This paper will study the interaction effect of the subgrade and the super- structure. The analytical solution of the interaction of a shear wall, flexible-rigid foundation, and an elastic half- space is derived for incident SH waves with various angles of incidence. It found that the flexible ring (soft layer) cannot be used as an isolation mechanism to decouple asuperstructure from its substructure resting on a shaking half-space.展开更多
The limitations of using one-parameter to describe the crack-tip fields have prompted investigators to consider better descriptions of the crack tip fields. The two-parameter descriptions, such as J-Q theory, have bee...The limitations of using one-parameter to describe the crack-tip fields have prompted investigators to consider better descriptions of the crack tip fields. The two-parameter descriptions, such as J-Q theory, have been an important development in this field. But under the consideration of plane strain and three-dimensional problem, the effects of the out-of-plane stress can not be neglected In this paper, effects of the in-plane constraint as well as the out-of-plane constraint are studied by aid of the finite element method on the plane strain condition. It is obvious that both the in-plane constraint (Q factor) and the out-of-plane constraint (Tz = σzz/(σxx + σyy) ) affect the crack tip fields.Several important features of the out-of-plane constraint are described out based on the simulation results. At the end of this paper, a three-parameter formulation is proposed, in which both the in-plane constraint and the out-of-plane constraint are considered. Comparing with the results of the FEM numerical simulation, the three-parameter description can provide a better prediction near the crack tip.展开更多
In the present paper are reported the OH…O out-of-plane bending band[γ(OH)] between 900—950 cm -1 of dimethylol propionic acid(DMPA), its dependence upon temperature and its overtone band investigated via FTIR s...In the present paper are reported the OH…O out-of-plane bending band[γ(OH)] between 900—950 cm -1 of dimethylol propionic acid(DMPA), its dependence upon temperature and its overtone band investigated via FTIR spectroscopy. It has been found based on the crystal structure that the band [γ(OH)] may not certainly be the characteristic band of carboxylic dimers, it can also result from another H-bond formed between carboxylic carbonyl and the primary hydroxyl. In addition, the band [γ(OH)] is very sensitive to temperature change but its overtone band can only appear at a low temperature.展开更多
The behaviors of infill wall in earthquakes show that infill masonry walls,which are used as nonstructural elements of concrete frames,are vulnerable when they are subjected to earthquake.In order to achieve an optima...The behaviors of infill wall in earthquakes show that infill masonry walls,which are used as nonstructural elements of concrete frames,are vulnerable when they are subjected to earthquake.In order to achieve an optimal antiseismic behavior,or even stability,two methods of connection are investigated.The shaking table tests,with 1:3 scale walls of two-storey model subjected to horizontal earthquake loads,were carried out to investigate the out-of-plane behaviors with different connections between walls and beams.The test results show that the connection methods employed between walls and beams have a significant effect on the out-of-plane stability of infill walls.The walls bound by bars with the beams perform better than those with inclined bricks without gaps.展开更多
The out-of-plane distortion induced in a multi-pass circumferential fillet welding of tube to pipe under different weld sequences and directions was studied using Finite Element Method(FEM) based Sysweld software and ...The out-of-plane distortion induced in a multi-pass circumferential fillet welding of tube to pipe under different weld sequences and directions was studied using Finite Element Method(FEM) based Sysweld software and verified experimentally. The FEM analyses consisted of thermal and mechanical analyses.Thermal analysis was validated with experimental transient temperature measurements. In the mechanical analysis, three different weld sequences and directions were considered to understand the mechanism of out-of-plane distortion in the tube to pipe T-joints. It was learnt that the welding direction plays a major role in minimizing the out-of-plane distortion. Further, during circumferential fillet welding of the tube to pipe component, the out-of-plane distortion generated in the x direction was primarily influenced by heat input due to the start and stop points, whereas the distortion in the z direction was influenced by time lag and welding direction. The FEM predicted distortion was compared with experimental measurements and the mechanism of out-of-plane distortion was confirmed.展开更多
The effects of out-of-plane shear flows on fast magnetic reconnection are numerically investigated by a two- dimensional (2D) hybrid model in an initial Harris sheet equilibrium with flows. The equilibrium and drive...The effects of out-of-plane shear flows on fast magnetic reconnection are numerically investigated by a two- dimensional (2D) hybrid model in an initial Harris sheet equilibrium with flows. The equilibrium and driven shear flows out of the 2D reconnection plane with symmetric and antisymmetric profiles respectively are used in the simulation. It is found that the out-of-plane flows with shears in-plane can change the quadrupolar structure of the out-of-plane magnetic field and, therefore, modify the growth rate of magnetic reconnection. Furthermore, the driven flow varying along the anti-parallel magnetic field can either enhance or reduce the reconnection rate as the direction of flow changes. Secondary islands are also generated in the process with converting the initial X-point into an O-point.展开更多
The out-of-plane shear properties of cross-laminated timber(CLT)substantially influence the overall mechanical properties of CLT.Various testing methods and theories related to these properties have recently been deve...The out-of-plane shear properties of cross-laminated timber(CLT)substantially influence the overall mechanical properties of CLT.Various testing methods and theories related to these properties have recently been developed.The effects of the number of layers(three and five layers)and testing method(short-span three-and four-point bending tests)on the out-of-plane shear properties of CLT were evaluated.The out-of-plane shear strength values were calculated based on different theories for comparison.The failure mode in the short-span four-point bending(FPB)method was mainly the rolling shear(RS)failure in the cross layers,indicating that the FPB method was appropriate to evaluate the RS strength of CLT.The out-of-plane shear capacity obtained using the three-point bending(TPB)method was higher than that tested by the FPB method.The testing methods significantly influenced the out-of-plane shear capacity of the three-layer specimens but not that of the five-layer specimens.With an increase in the number of layers,the out-of-plane shear strength of the specimens decreased by 24%.A linear correlation was found among the shear strength values obtained from different theories.展开更多
For years,non-structural masonry walls have received little attention by code developers and professional engineers.Recently,significant efforts have been made to shed more light on out-of-plane(OOP)behavior of non-st...For years,non-structural masonry walls have received little attention by code developers and professional engineers.Recently,significant efforts have been made to shed more light on out-of-plane(OOP)behavior of non-structural masonry walls.In updated provisions of the Iranian seismic code,bed joint reinforcements(BJRs)and steel wallposts have been suggested for use.BJRs are horizontal reinforcements;steel wallposts are vertical truss-like elements intended to provide additional OOP restraints for a wall.The contribution of BJRs has previously been investigated by the authors.This study is devoted to investigating the contribution of steel wallposts to the OOP behavior of non-structural masonry walls.Using pre-validated 3D finite element(FE)models,the OOP behavior of 180 non-structural masonry walls with varying configurations and details are investigated.The OOP pressure-displacement curve,ultimate strength,the response modification factor,and the cracking pattern are among the results presented in this study.It is found that steel wallposts,especially those with higher rigidity,can improve the OOP strength of the walls.The contribution of wallposts in the case of shorter length walls and walls with an opening are more pronounced.Results also indicate that masonry walls with wallpost generally have smaller modification factors compared to similar walls without wallpost.展开更多
As positioning sensors,edge computation power,and communication technologies continue to develop,a moving agent can now sense its surroundings and communicate with other agents.By receiving spatial information from bo...As positioning sensors,edge computation power,and communication technologies continue to develop,a moving agent can now sense its surroundings and communicate with other agents.By receiving spatial information from both its environment and other agents,an agent can use various methods and sensor types to localize itself.With its high flexibility and robustness,collaborative positioning has become a widely used method in both military and civilian applications.This paper introduces the basic fundamental concepts and applications of collaborative positioning,and reviews recent progress in the field based on camera,LiDAR(Light Detection and Ranging),wireless sensor,and their integration.The paper compares the current methods with respect to their sensor type,summarizes their main paradigms,and analyzes their evaluation experiments.Finally,the paper discusses the main challenges and open issues that require further research.展开更多
Measurement of out-of-plane deformation is significant to understanding of the deflection mechanisms of the plate and tube structures.In this study,a new surface contouring technique with color structured light is app...Measurement of out-of-plane deformation is significant to understanding of the deflection mechanisms of the plate and tube structures.In this study,a new surface contouring technique with color structured light is applied to measure the out-of-plane deformation of structures with one-shot projection.Through color fringe recognizing,decoding and triangulation processing for the captured images corresponding to each deformation state,the feasibility of the method is testified by the measurement of elastic deflections of a flexible square plate,showing good agreement with those from the calibrated displacement driver.The plastic deformation of two alloy aluminum rectangular tubes is measured to show the technique application to surface topographic evaluation of the buckling structures with large displacements.展开更多
基金National Natural Science Foundation of China under Grant No.51978184。
文摘This study focuses on variations in the hysteretic behavior of buckling-restrained braces(BRBs)configured with or without out-of-plane eccentricity under cyclic loading.Quasi-static experiments and numerical simulations were carried out on concentrically and eccentrically loaded BRB specimens to investigate the mechanical properties,energy dissipation performance,stress distribution,and high-order deformation pattern.The experimental and numerical results showed that compared to the concentrically loaded BRBs,the stiffness,yield force,cumulated plastic ductility(CPD)coefficient,equivalent viscous damping coefficient and energy dissipation decreased,and the yield displacement and compression strength adjustment factor increased for the eccentrically loaded BRBs.With the existence of the out-of-plane eccentricity,the initial yield position changes from the yield segment to the junction between the yield segment and transition segment under a tensile load,while the initial high-order buckling pattern changes from a first-order C-shape to a secondorder S-shape under a compressive load.
文摘The out-of-plane fold is a common defect of composite materials during the manufacturing process and will greatly affect the compressive strength as well as the service life.Making it of great importance to investigate the influence of out-of-plane defects to the compressive strength of laminate plates of composite materials,and to understand the patterns of defect evolution.Therefore,the strip method is applied in this article to create out-of-plane defects with different aspect ratios in laminated plates of composite materials,and a compressive performance test is conducted to quantify the influence of out-of-plane defects.The result shows that the compressive strength becomes weaker with a greater aspect ratio.When the highest aspect ratio is set to 0.12 in the experiment,the compressive strength reduces by 36.1%.Then we establish a 3-D progressive damage model based on continuum mechanics,and write it into the UMAT subroutine together with the 3-D Hashin criteria and the non-linear degradation criteria of materials.3-D solid modeling is performed for the samples with an out-of-plane fold based on ABAQUS,and progressive damage analysis is conducted to acquire the inplane evolution process of initial failure strength with different laminates.The experimental results agree well with the simulation results.
文摘The aim of this work is to study the stress distributions and the location of hot spots stress in the vicinity of the intersection lines of the tubular elements of the tubular TY-joints.Using the finite element models,we analyze the effects of geometrical parameters on the stress concentration factor in the case of in-plane bending and out-of-plane bending loads,around the weld toe of the tubular joints.Our results reveal the location of the maximum stress concentration factor at the heel or toe in the case of in-plane bending loads and at the saddle point in the case of out-of-plane bending loads.Six parametric equations are established and used to calculate the stress concentration factor at critical locations using the non-linear regression method.The results obtained from the finite element analysis are close to the results of the parametric equations and the experimental data from the previous work.
文摘The two coupled governing differential equations for the out-of-plane vibrations of non-uniform beams with variable curvature are derived via the Hamilton’s principle.These equations are expressed in terms of flexural and torsional displacements simultaneously.In this study,the analytical method is proposed.Firstly,two physical parameters are introduced to simplify the analysis.One derives the explicit relations between the flexural and the torsional displacements which can also be used to reduce the difficulty in experimental measurements.Based on the relation,the two governing characteristic differential equations with variable coefficients can be uncoupled into a sixth-order ordinary differential equation in terms of the flexural displacement only.When the material and geometric properties of the beam are in arbitrary polynomial forms,the exact solutions with regard to the outof-plane vibrations of non-uniform beams with variable curvature can be obtained by the recurrence formula.In addition,the mode transition mechanism is revealed and the influence of several parameters on the vibration of the non-uniform beam with variable curvature is explored.
文摘Soil-structure interaction (SSI) of a building and shear wall above a foundation in an elastic half-space has long been an important research subject for earthquake engineers and strong-motion seismologists. Numerous papers have been published since the early 1970s; however, very few of these papers have analytic closed-form solu- tions available. The soil-structure interaction problem is one of the most classic problems connecting the two dis- ciplines of earthquake engineering and civil engineering. The interaction effect represents the mechanism of energy transfer and dissipation among the elements of the dynamic system, namely the soil subgrade, foundation, and super- structure. This interaction effect is important across many structure, foundation, and subgrade types but is most pro- nounced when a rigid superstructure is founded on a rela- tively soft lower foundation and subgrade. This effect may only be ignored when the subgrade is much harder than a flexible superstructure: for instance a flexible moment frame superstructure founded on a thin compacted soil layer on top of very stiff bedrock below. This paper will study the interaction effect of the subgrade and the super- structure. The analytical solution of the interaction of a shear wall, flexible-rigid foundation, and an elastic half- space is derived for incident SH waves with various angles of incidence. It found that the flexible ring (soft layer) cannot be used as an isolation mechanism to decouple asuperstructure from its substructure resting on a shaking half-space.
文摘The limitations of using one-parameter to describe the crack-tip fields have prompted investigators to consider better descriptions of the crack tip fields. The two-parameter descriptions, such as J-Q theory, have been an important development in this field. But under the consideration of plane strain and three-dimensional problem, the effects of the out-of-plane stress can not be neglected In this paper, effects of the in-plane constraint as well as the out-of-plane constraint are studied by aid of the finite element method on the plane strain condition. It is obvious that both the in-plane constraint (Q factor) and the out-of-plane constraint (Tz = σzz/(σxx + σyy) ) affect the crack tip fields.Several important features of the out-of-plane constraint are described out based on the simulation results. At the end of this paper, a three-parameter formulation is proposed, in which both the in-plane constraint and the out-of-plane constraint are considered. Comparing with the results of the FEM numerical simulation, the three-parameter description can provide a better prediction near the crack tip.
文摘In the present paper are reported the OH…O out-of-plane bending band[γ(OH)] between 900—950 cm -1 of dimethylol propionic acid(DMPA), its dependence upon temperature and its overtone band investigated via FTIR spectroscopy. It has been found based on the crystal structure that the band [γ(OH)] may not certainly be the characteristic band of carboxylic dimers, it can also result from another H-bond formed between carboxylic carbonyl and the primary hydroxyl. In addition, the band [γ(OH)] is very sensitive to temperature change but its overtone band can only appear at a low temperature.
基金Supported by National Key Technologies R&D Program of China during the 11th Five-Year Plan Period(No.2008BAJ08B11-03)Research and Development Project of Ministry of Housing and Urban-Rural Development (No.06-k6-17)
文摘The behaviors of infill wall in earthquakes show that infill masonry walls,which are used as nonstructural elements of concrete frames,are vulnerable when they are subjected to earthquake.In order to achieve an optimal antiseismic behavior,or even stability,two methods of connection are investigated.The shaking table tests,with 1:3 scale walls of two-storey model subjected to horizontal earthquake loads,were carried out to investigate the out-of-plane behaviors with different connections between walls and beams.The test results show that the connection methods employed between walls and beams have a significant effect on the out-of-plane stability of infill walls.The walls bound by bars with the beams perform better than those with inclined bricks without gaps.
文摘The out-of-plane distortion induced in a multi-pass circumferential fillet welding of tube to pipe under different weld sequences and directions was studied using Finite Element Method(FEM) based Sysweld software and verified experimentally. The FEM analyses consisted of thermal and mechanical analyses.Thermal analysis was validated with experimental transient temperature measurements. In the mechanical analysis, three different weld sequences and directions were considered to understand the mechanism of out-of-plane distortion in the tube to pipe T-joints. It was learnt that the welding direction plays a major role in minimizing the out-of-plane distortion. Further, during circumferential fillet welding of the tube to pipe component, the out-of-plane distortion generated in the x direction was primarily influenced by heat input due to the start and stop points, whereas the distortion in the z direction was influenced by time lag and welding direction. The FEM predicted distortion was compared with experimental measurements and the mechanism of out-of-plane distortion was confirmed.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.10935004,1126114032,10778613,10575018,40731056,10975012,and 11261140326)
文摘The effects of out-of-plane shear flows on fast magnetic reconnection are numerically investigated by a two- dimensional (2D) hybrid model in an initial Harris sheet equilibrium with flows. The equilibrium and driven shear flows out of the 2D reconnection plane with symmetric and antisymmetric profiles respectively are used in the simulation. It is found that the out-of-plane flows with shears in-plane can change the quadrupolar structure of the out-of-plane magnetic field and, therefore, modify the growth rate of magnetic reconnection. Furthermore, the driven flow varying along the anti-parallel magnetic field can either enhance or reduce the reconnection rate as the direction of flow changes. Secondary islands are also generated in the process with converting the initial X-point into an O-point.
基金by National Natural Science Foundation of China(Grant No.31570559)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD).
文摘The out-of-plane shear properties of cross-laminated timber(CLT)substantially influence the overall mechanical properties of CLT.Various testing methods and theories related to these properties have recently been developed.The effects of the number of layers(three and five layers)and testing method(short-span three-and four-point bending tests)on the out-of-plane shear properties of CLT were evaluated.The out-of-plane shear strength values were calculated based on different theories for comparison.The failure mode in the short-span four-point bending(FPB)method was mainly the rolling shear(RS)failure in the cross layers,indicating that the FPB method was appropriate to evaluate the RS strength of CLT.The out-of-plane shear capacity obtained using the three-point bending(TPB)method was higher than that tested by the FPB method.The testing methods significantly influenced the out-of-plane shear capacity of the three-layer specimens but not that of the five-layer specimens.With an increase in the number of layers,the out-of-plane shear strength of the specimens decreased by 24%.A linear correlation was found among the shear strength values obtained from different theories.
文摘For years,non-structural masonry walls have received little attention by code developers and professional engineers.Recently,significant efforts have been made to shed more light on out-of-plane(OOP)behavior of non-structural masonry walls.In updated provisions of the Iranian seismic code,bed joint reinforcements(BJRs)and steel wallposts have been suggested for use.BJRs are horizontal reinforcements;steel wallposts are vertical truss-like elements intended to provide additional OOP restraints for a wall.The contribution of BJRs has previously been investigated by the authors.This study is devoted to investigating the contribution of steel wallposts to the OOP behavior of non-structural masonry walls.Using pre-validated 3D finite element(FE)models,the OOP behavior of 180 non-structural masonry walls with varying configurations and details are investigated.The OOP pressure-displacement curve,ultimate strength,the response modification factor,and the cracking pattern are among the results presented in this study.It is found that steel wallposts,especially those with higher rigidity,can improve the OOP strength of the walls.The contribution of wallposts in the case of shorter length walls and walls with an opening are more pronounced.Results also indicate that masonry walls with wallpost generally have smaller modification factors compared to similar walls without wallpost.
基金National Natural Science Foundation of China(Grant No.62101138)Shandong Natural Science Foundation(Grant No.ZR2021QD148)+1 种基金Guangdong Natural Science Foundation(Grant No.2022A1515012573)Guangzhou Basic and Applied Basic Research Project(Grant No.202102020701)for providing funds for publishing this paper。
文摘As positioning sensors,edge computation power,and communication technologies continue to develop,a moving agent can now sense its surroundings and communicate with other agents.By receiving spatial information from both its environment and other agents,an agent can use various methods and sensor types to localize itself.With its high flexibility and robustness,collaborative positioning has become a widely used method in both military and civilian applications.This paper introduces the basic fundamental concepts and applications of collaborative positioning,and reviews recent progress in the field based on camera,LiDAR(Light Detection and Ranging),wireless sensor,and their integration.The paper compares the current methods with respect to their sensor type,summarizes their main paradigms,and analyzes their evaluation experiments.Finally,the paper discusses the main challenges and open issues that require further research.
文摘Measurement of out-of-plane deformation is significant to understanding of the deflection mechanisms of the plate and tube structures.In this study,a new surface contouring technique with color structured light is applied to measure the out-of-plane deformation of structures with one-shot projection.Through color fringe recognizing,decoding and triangulation processing for the captured images corresponding to each deformation state,the feasibility of the method is testified by the measurement of elastic deflections of a flexible square plate,showing good agreement with those from the calibrated displacement driver.The plastic deformation of two alloy aluminum rectangular tubes is measured to show the technique application to surface topographic evaluation of the buckling structures with large displacements.