In this paper,two new concepts—“main out-of-step mode” and “minor out-of-step mode”—are proposed for power system reliability analysis. Large-scale power system studies found that out-of-step generator groups ma...In this paper,two new concepts—“main out-of-step mode” and “minor out-of-step mode”—are proposed for power system reliability analysis. Large-scale power system studies found that out-of-step generator groups may have characteristics of the main out-of-step mode and the minor out-of-step mode. The generator groups with main out-of-step modes can determine the out-of-step interface of the large-scale power system,while generators with the minor out-of-step modes cannot play such a role. Therefore,the method of capturing the out-of-step interface by seeking the lowest voltage point(the out-of-step center) can only group the generators with the main out-of-step modes,and may fail to combine the generators with the minor out-of-step modes into proper coherent generator groups. Thus,it is necessary in engineering applications to equip the generators that are likely to have the characteristics of the minor out-of-step modes with separation devices based on off-line simulation studies in order to reduce the risk of further accidents caused by these generators after system separation.展开更多
In the world, recent increased disturbances, congestion management problems, and increases of complexity in operating power systems have brought the need for integrations and improvements of power systems. Advanced ap...In the world, recent increased disturbances, congestion management problems, and increases of complexity in operating power systems have brought the need for integrations and improvements of power systems. Advanced applications in WAMPAC (wide area monitoring, protection, and control) systems provide a cost effective solution to improve system planning, operation, maintenance, and energy trading. Synchronized measurement technology and the application are an important element of WAMPAC. In addition, PMUs (phasor measurement units) are the most accurate and advanced time-synchronized technology available for WAMPAC application. Therefore, the original measurement system of PMUs has been constructed in Japan. This paper describes the estimation method of a center of inertia frequency by applying actual measurement data. The application of this method enables us to extract power system oscillations from measurement data appropriately. Moreover, this proposed method will help to the clarification of power system dynamics and this application will make it possible to realize the monitoring of power system oscillations associated with the power system stability.展开更多
Under the background of complicated interconnected network,the splitting criterion for accurately capturing the electrical center in real time is the prerequisite of power grid splitting.This paper studies the feature...Under the background of complicated interconnected network,the splitting criterion for accurately capturing the electrical center in real time is the prerequisite of power grid splitting.This paper studies the features of electric quantity in the electrical center in aspect of the instantaneous frequency,and proposes the out-of-step splitting criterion for power systems based on bus voltage frequency.Firstly,through the establishment and solution to the out-of-step model of the power grid,the analytical expression of the voltage frequency at any position is obtained in the out-of-step oscillation,and the voltage frequency features of electrical center and non-electrical center are analyzed in details.Then,this paper constructs the typical scene of migration of electrical center to study the change rules of voltage frequency.Finally,the splitting criterion based on bus voltage frequency is proposed as well as the instruction for use.This criterion is easy to be realized and can adapt to the migration of electrical center.Also it is free from the limits of power network structure and operational mode.Simulation results of CEPRI-36 system and interconnected network example of one actual region verify the accuracy and the effectiveness of the proposed criterion.展开更多
Out-of-step oscillation separation devices based on apparent impedance angle trajectory are widely used in the power grid in China,and their reliability is of great importance.In this paper,the influence mechanism of ...Out-of-step oscillation separation devices based on apparent impedance angle trajectory are widely used in the power grid in China,and their reliability is of great importance.In this paper,the influence mechanism of series compensation on apparent impedance angle trajectory is analyzed.It reveals that series compensation capacitors reduce the equivalent impedance angle and consequently the apparent impedance angle cannot pass through all four zones,resulting in the risk of failure for the separation devices.A revised method of apparent impedance angle based on compensation principle is discussed,and then an improved out-of-step oscillation detection criterion is proposed.In view of the fact that the apparent impedance angle at the moment of maximum current is equal to the equivalent impedance angle during an oscillation process,a practical algorithm based on the compensated apparent impedance angle is proposed.RTDS tests are conducted to verify the effectiveness of the new criterion,considering transmission lines with a high series compensation level.展开更多
Out-of-step oscillation is a very destructive physical phenomenon in power system, which could directly cause big blackout accompanied by serious sociology-economic impacts. Out-of-step splitting control is an indispe...Out-of-step oscillation is a very destructive physical phenomenon in power system, which could directly cause big blackout accompanied by serious sociology-economic impacts. Out-of-step splitting control is an indispensable means, which could protect the system from major shocks of out-of-step oscillation. After years of development, it has achieved certain amount of research results. Have the existing methods been able to meet the requirements of out-of-step splitting? What improvements are needed? Under this background, this review is written. It combs the development of out-of-step splitting control technologies and analyzes the technical routes and characteristics of different methods. It points out the contradiction between rapidity and optimality is the biggest technical problem, existing in both the traditional local measurement based out-of-step splitting protection and the wide-area information based out-of-step splitting protection. It further points out that the advantages of the two types of protections can be combined with the unique physical characteristics of the out-of-step center to form a more advantageous splitting strategy. Besides, facing the fact of large-scale renewable energy access to power grid in recent years, this review also analyzes the challenges brought by it and provides some corresponding suggestions. It is hoped to provide some guidance for the subsequent research work.展开更多
The performance of BCC (Beijing Climate Center) AGCM 2.0.1 (Atmospheric General Circulation Model version 2.0.1) in simulating the tropical intraseasonal oscillation (TIO) is examined in this paper.The simulatio...The performance of BCC (Beijing Climate Center) AGCM 2.0.1 (Atmospheric General Circulation Model version 2.0.1) in simulating the tropical intraseasonal oscillation (TIO) is examined in this paper.The simulations are validated against observation and compared with the NCAR CAM3 (Community Atmosphere Model version 3) results.The BCC AGCM2.0.1 is developed based on the original BCC AGCM (version 1) and NCAR CAM3.New reference atmosphere and reference pressure are introduced into the model.Therefore,the original prognostic variables of temperature and surface pressure become their departures from the reference atmosphere.A new Zhang-McFarlane convective parameterization scheme is incorporated into the model with a few modifications.Other modifications include those in the boundary layer process and snow cover calculation.All simulations are run for 52 yr from 1949 to 2001 under the lower boundary conditions of observed monthly SST.The TIOs from the model are analyzed.The comparison shows that the NCAR CAM3 has a poor ability in simulating the TIO.The simulated strength of the TIO is very weak.The energy of the eastward moving waves is similar to that of the westward moving waves in CAM3.While in observation the former is much larger than the latter.The seasonal variation and spatial distribution of the TIO produced by CAM3 are also much different from the observation.The ability of the BCC AGCM2.0.1 in simulating the TIO is significantly better.The simulated TIO is evident.The strength of the TIO produced by the BCC AGCM2.0.1 is close to the observation.The energy of eastward moving.waves is much stronger than that of the westward moving waves,which is consistent with the observation.There is no significant difference in the seasonal variation and spatial distribution of the TIO between the BCC model simulation and the observation.In general,the BCC model performs better than CAM3 in simulating the TIO.展开更多
基金Project (No. 50277034) supported by the National Natural ScienceFoundation of China
文摘In this paper,two new concepts—“main out-of-step mode” and “minor out-of-step mode”—are proposed for power system reliability analysis. Large-scale power system studies found that out-of-step generator groups may have characteristics of the main out-of-step mode and the minor out-of-step mode. The generator groups with main out-of-step modes can determine the out-of-step interface of the large-scale power system,while generators with the minor out-of-step modes cannot play such a role. Therefore,the method of capturing the out-of-step interface by seeking the lowest voltage point(the out-of-step center) can only group the generators with the main out-of-step modes,and may fail to combine the generators with the minor out-of-step modes into proper coherent generator groups. Thus,it is necessary in engineering applications to equip the generators that are likely to have the characteristics of the minor out-of-step modes with separation devices based on off-line simulation studies in order to reduce the risk of further accidents caused by these generators after system separation.
文摘In the world, recent increased disturbances, congestion management problems, and increases of complexity in operating power systems have brought the need for integrations and improvements of power systems. Advanced applications in WAMPAC (wide area monitoring, protection, and control) systems provide a cost effective solution to improve system planning, operation, maintenance, and energy trading. Synchronized measurement technology and the application are an important element of WAMPAC. In addition, PMUs (phasor measurement units) are the most accurate and advanced time-synchronized technology available for WAMPAC application. Therefore, the original measurement system of PMUs has been constructed in Japan. This paper describes the estimation method of a center of inertia frequency by applying actual measurement data. The application of this method enables us to extract power system oscillations from measurement data appropriately. Moreover, this proposed method will help to the clarification of power system dynamics and this application will make it possible to realize the monitoring of power system oscillations associated with the power system stability.
基金This work was supported by State Grid Corporation of China,Major Projects on Planning and Operation Control of Large Scale Grid(No.SGCC-MPLG029-2012)China Postdoctoral Science Foundation(No.2014M552080).
文摘Under the background of complicated interconnected network,the splitting criterion for accurately capturing the electrical center in real time is the prerequisite of power grid splitting.This paper studies the features of electric quantity in the electrical center in aspect of the instantaneous frequency,and proposes the out-of-step splitting criterion for power systems based on bus voltage frequency.Firstly,through the establishment and solution to the out-of-step model of the power grid,the analytical expression of the voltage frequency at any position is obtained in the out-of-step oscillation,and the voltage frequency features of electrical center and non-electrical center are analyzed in details.Then,this paper constructs the typical scene of migration of electrical center to study the change rules of voltage frequency.Finally,the splitting criterion based on bus voltage frequency is proposed as well as the instruction for use.This criterion is easy to be realized and can adapt to the migration of electrical center.Also it is free from the limits of power network structure and operational mode.Simulation results of CEPRI-36 system and interconnected network example of one actual region verify the accuracy and the effectiveness of the proposed criterion.
基金supported by the science and technology project of State Grid Corporation of China (Security Protection Technology of Embedded Components and Control Units in Power System Terminal,No.5100-201941446A-0-0-00).
文摘Out-of-step oscillation separation devices based on apparent impedance angle trajectory are widely used in the power grid in China,and their reliability is of great importance.In this paper,the influence mechanism of series compensation on apparent impedance angle trajectory is analyzed.It reveals that series compensation capacitors reduce the equivalent impedance angle and consequently the apparent impedance angle cannot pass through all four zones,resulting in the risk of failure for the separation devices.A revised method of apparent impedance angle based on compensation principle is discussed,and then an improved out-of-step oscillation detection criterion is proposed.In view of the fact that the apparent impedance angle at the moment of maximum current is equal to the equivalent impedance angle during an oscillation process,a practical algorithm based on the compensated apparent impedance angle is proposed.RTDS tests are conducted to verify the effectiveness of the new criterion,considering transmission lines with a high series compensation level.
基金supported by the National Natural Science Foundation of China(Grant No.62273207,61821004,62350083,62192755)the Future Young Scholars Program of Shandong University,China.
文摘Out-of-step oscillation is a very destructive physical phenomenon in power system, which could directly cause big blackout accompanied by serious sociology-economic impacts. Out-of-step splitting control is an indispensable means, which could protect the system from major shocks of out-of-step oscillation. After years of development, it has achieved certain amount of research results. Have the existing methods been able to meet the requirements of out-of-step splitting? What improvements are needed? Under this background, this review is written. It combs the development of out-of-step splitting control technologies and analyzes the technical routes and characteristics of different methods. It points out the contradiction between rapidity and optimality is the biggest technical problem, existing in both the traditional local measurement based out-of-step splitting protection and the wide-area information based out-of-step splitting protection. It further points out that the advantages of the two types of protections can be combined with the unique physical characteristics of the out-of-step center to form a more advantageous splitting strategy. Besides, facing the fact of large-scale renewable energy access to power grid in recent years, this review also analyzes the challenges brought by it and provides some corresponding suggestions. It is hoped to provide some guidance for the subsequent research work.
基金Supported by the Key Basic Research Project of the National "973" Program of China under Grant No.2010CB951902
文摘The performance of BCC (Beijing Climate Center) AGCM 2.0.1 (Atmospheric General Circulation Model version 2.0.1) in simulating the tropical intraseasonal oscillation (TIO) is examined in this paper.The simulations are validated against observation and compared with the NCAR CAM3 (Community Atmosphere Model version 3) results.The BCC AGCM2.0.1 is developed based on the original BCC AGCM (version 1) and NCAR CAM3.New reference atmosphere and reference pressure are introduced into the model.Therefore,the original prognostic variables of temperature and surface pressure become their departures from the reference atmosphere.A new Zhang-McFarlane convective parameterization scheme is incorporated into the model with a few modifications.Other modifications include those in the boundary layer process and snow cover calculation.All simulations are run for 52 yr from 1949 to 2001 under the lower boundary conditions of observed monthly SST.The TIOs from the model are analyzed.The comparison shows that the NCAR CAM3 has a poor ability in simulating the TIO.The simulated strength of the TIO is very weak.The energy of the eastward moving waves is similar to that of the westward moving waves in CAM3.While in observation the former is much larger than the latter.The seasonal variation and spatial distribution of the TIO produced by CAM3 are also much different from the observation.The ability of the BCC AGCM2.0.1 in simulating the TIO is significantly better.The simulated TIO is evident.The strength of the TIO produced by the BCC AGCM2.0.1 is close to the observation.The energy of eastward moving.waves is much stronger than that of the westward moving waves,which is consistent with the observation.There is no significant difference in the seasonal variation and spatial distribution of the TIO between the BCC model simulation and the observation.In general,the BCC model performs better than CAM3 in simulating the TIO.