Cobalt-based electrocatalysts take advantage of potentially harmonizable microstructure and flexible coupling effects compared to commercial noble metal-based catalytic materials.However,conventional water electrolysi...Cobalt-based electrocatalysts take advantage of potentially harmonizable microstructure and flexible coupling effects compared to commercial noble metal-based catalytic materials.However,conventional water electrolysis systems based on cobalt-based monofunctional hydrogen evolution reaction(HER)or oxygen evolution reaction(OER)catalysts have certain shortcomings in terms of resource utilization and universality.In contrast,cobalt-based bifunctional catalysts(CBCs)have attracted much attention in recent years for overall water splitting systems because of their practicality and reduced preparation cost of electrolyzer.This review aims to address the latest development in CBCs for total hydrolysis.The main modification strategies of CBCs are systematically classified in water electrolysis to provide an overview of how to regulate their morphology and electronic configuration.Then,the catalytic performance of CBCs in total-hydrolysis is summarized according to the types of cobalt-based phosphides,sulfides and oxides,and the mechanism of strengthened electrocatalytic ability is emphasized through combining experiments and theoretical calculations.Future efforts are finally suggested to focus on exploring the dynamic conversion of reaction intermediates and building near-industrial CBCs,designing advanced CBC materials through micro-modulation,and addressing commercial applications.展开更多
Sustainable production of H2 through electrochemical water splitting is of great importance in the foreseeable future.Transition-metal metaphosphates(TMMPs)have a three-dimensional(3D)open-framework structure and a hi...Sustainable production of H2 through electrochemical water splitting is of great importance in the foreseeable future.Transition-metal metaphosphates(TMMPs)have a three-dimensional(3D)open-framework structure and a high content of P(which exists as PO3-),and therefore have been recognized as highly efficient catalysts for oxygen evolution reaction(OER)and the bottleneck of electrochemical water splitting.Furthermore,TMMPs can also contribute to hydrogen evolution reaction(HER)in alkaline and neutral media by facilitating water dissociation,and thus,overall water splitting can be achieved using this kind of material.In this timely review,we summarize the recent advances in the synthesis of TMMPs and their applications in OER and HER.We present a brief introduction of the structure and synthetic strategies of TMMPs in the first two parts.Then,we review the latest progress made in research on TMMPs as OER,HER,and overall water-splitting electrocatalysts.In this part,the intrinsic activity of TMMPs as well as the current strategy for improving the catalytic activity will be discussed systematically.Finally,we present the future opportunities and the remaining challenges for the application of TMMPs in the electrocatalysis field.展开更多
Action recognition has been recognized as an activity in which individuals’behaviour can be observed.Assembling profiles of regular activities such as activities of daily living can support identifying trends in the ...Action recognition has been recognized as an activity in which individuals’behaviour can be observed.Assembling profiles of regular activities such as activities of daily living can support identifying trends in the data during critical events.A skeleton representation of the human body has been proven to be effective for this task.The skeletons are presented in graphs form-like.However,the topology of a graph is not structured like Euclideanbased data.Therefore,a new set of methods to perform the convolution operation upon the skeleton graph is proposed.Our proposal is based on the Spatial Temporal-Graph Convolutional Network(ST-GCN)framework.In this study,we proposed an improved set of label mapping methods for the ST-GCN framework.We introduce three split techniques(full distance split,connection split,and index split)as an alternative approach for the convolution operation.The experiments presented in this study have been trained using two benchmark datasets:NTU-RGB+D and Kinetics to evaluate the performance.Our results indicate that our split techniques outperform the previous partition strategies and aremore stable during training without using the edge importance weighting additional training parameter.Therefore,our proposal can provide a more realistic solution for real-time applications centred on daily living recognition systems activities for indoor environments.展开更多
Bismuth vanadate(BiVO_(4))is an excellent photoanode material for photoelectrochemical(PEC)water splitting system,possessing high theoretical photoelectrocatalytic conversion efficiency.However,the actual PEC activity...Bismuth vanadate(BiVO_(4))is an excellent photoanode material for photoelectrochemical(PEC)water splitting system,possessing high theoretical photoelectrocatalytic conversion efficiency.However,the actual PEC activity and stability of BiVO_(4)are faced with great challenges due to factors such as severe charge recombination and slow water oxidation kinetics at the interface.Therefore,various interface regulation strategies have been adopted to optimize the BiVO_(4)photoanode.This review provides an in-depth analysis for the mechanism of interface regulation strategies from the perspective of factors affecting the PEC performance of BiVO_(4)photoanodes.These interface regulation strategies improve the PEC performance of BiVO_(4)photoanode by promoting charge separation and transfer,accelerating interfacial reaction kinetics,and enhancing stability.The research on the interface regulation strategies of BiVO_(4)photoanode is of great significance for promoting the development of PEC water splitting technology.At the same time,it also has inspiration for providing new ideas and methods for designing and preparing efficient and stable catalytic materials.展开更多
In flexible job-shop batch scheduling problem, the optimal lot-size of different process is not always the same because of different processing time and set-up time. Even for the same process of the same workpiece, th...In flexible job-shop batch scheduling problem, the optimal lot-size of different process is not always the same because of different processing time and set-up time. Even for the same process of the same workpiece, the choice of machine also affects the optimal lot-size. In addition, different choices of lot-size between the constrained processes will impact the manufacture efficiency. Considering that each process has its own appropriate lot-size, we put forward the concept of scheduling with lot-splitting based on process and set up the scheduling model of lot-splitting to critical path process as the core. The model could update the set of batch process and machine selection strategy dynamically to determine processing route and arrange proper lot-size for different processes, to achieve the purpose of optimizing the makespan and reducing the processing batches effectively. The experiment results show that, comparing with lot-splitting scheduling scheme based on workpiece, this model optimizes the makespan and improves the utilization efficiency of the machine. It also greatly decreases the machined batches (42%) and reduces the complexity of shop scheduling production management.展开更多
Out-of-step oscillation is a very destructive physical phenomenon in power system, which could directly cause big blackout accompanied by serious sociology-economic impacts. Out-of-step splitting control is an indispe...Out-of-step oscillation is a very destructive physical phenomenon in power system, which could directly cause big blackout accompanied by serious sociology-economic impacts. Out-of-step splitting control is an indispensable means, which could protect the system from major shocks of out-of-step oscillation. After years of development, it has achieved certain amount of research results. Have the existing methods been able to meet the requirements of out-of-step splitting? What improvements are needed? Under this background, this review is written. It combs the development of out-of-step splitting control technologies and analyzes the technical routes and characteristics of different methods. It points out the contradiction between rapidity and optimality is the biggest technical problem, existing in both the traditional local measurement based out-of-step splitting protection and the wide-area information based out-of-step splitting protection. It further points out that the advantages of the two types of protections can be combined with the unique physical characteristics of the out-of-step center to form a more advantageous splitting strategy. Besides, facing the fact of large-scale renewable energy access to power grid in recent years, this review also analyzes the challenges brought by it and provides some corresponding suggestions. It is hoped to provide some guidance for the subsequent research work.展开更多
Excessive application of nitrogen (N) fertilizer is the main cause of N loss and poor use efficiency in winter wheat (Triticum aestivum L.) production in the North China Plain (NCP).Drip fertigation is considered to b...Excessive application of nitrogen (N) fertilizer is the main cause of N loss and poor use efficiency in winter wheat (Triticum aestivum L.) production in the North China Plain (NCP).Drip fertigation is considered to be an effective method for improving N use efficiency and reducing losses,while the performance of drip fertigation in winter wheat is limited by poor N scheduling.A two-year field experiment was conducted to evaluate the growth,development and yield of drip-fertigated winter wheat under different split urea (46%N,240 kg ha^(-1)) applications.The six treatments consisted of five fertigation N application scheduling programs and one slow-release fertilizer (SRF) application.The five N scheduling treatments were N0–100 (0%at sowing and 100%at jointing/booting),N25–75 (25%at sowing and 75%at jointing and booting),N50–50(50%at sowing and 50%at jointing/booting),N75–25 (75%at sowing and 25 at jointing/booting),and N100–0 (100%at sowing and 0%at jointing/booting).The SRF (43%N,240 kg ha^(-1)) was only used as fertilizer at sowing.Split N application significantly (P<0.05) affected wheat grain yield,yield components,aboveground biomass (ABM),water use efficiency(WUE) and nitrogen partial factor productivity (NPFP).The N50–50 and SRF treatments respectively had the highest yield(8.84 and 8.85 t ha^(-1)),ABM (20.67 and 20.83 t ha^(-1)),WUE (2.28 and 2.17 kg m^(-3)) and NPFP (36.82 and 36.88 kg kg^(-1)).This work provided substantial evidence that urea-N applied in equal splits between basal and topdressing doses compete economically with the highly expensive SRF for fertilization of winter wheat crops.Although the single-dose SRF could reduce labor costs involved with the traditional method of manual spreading,the drip fertigation system used in this study with the N50–50 treatment provides an option for farmers to maintain wheat production in the NCP.展开更多
Hydrogen can be sustainably produced through photoelectrochemical(PEC)water splitting.The process of PEC water splitting is composed of two vital half-reactions:water oxidation to O2 on photoanode,and proton reduction...Hydrogen can be sustainably produced through photoelectrochemical(PEC)water splitting.The process of PEC water splitting is composed of two vital half-reactions:water oxidation to O2 on photoanode,and proton reduction to H2 on photocathode.Both in thermodynamics and kinetics,the oxidation of water on photoanode is much more challenging,because the formation of O2 involves the four-holes reaction process that is more difficult than the two-protons reduction.Accordingly,the oxidation of water into O2 is the rate-determining reaction for PEC water splitting,which is closely affected by the light harvesting,charge separation and transfer,as well as surface activity of photoanode.In principle,water oxidation is initiated by the photo-excited charge of photoanode.In this review,we took hematite photoanode as a typical example to illustrate the progress in modifying the charge separation and migration property of metal-oxide photoanodes for water oxidation.The typical strategies adopted to facilitate the charge transfer and separation of hematite photoanode were specifically summarized.In addition,the views designing and developing hematite photoanode with high-performance for water oxidation were presented.This review provides comprehensive information about the state-of-the-art progress of hematite-based photoanodes and forecast the developing directions of photoanode materials for solar water splitting.展开更多
Under the background of complicated interconnected network,the splitting criterion for accurately capturing the electrical center in real time is the prerequisite of power grid splitting.This paper studies the feature...Under the background of complicated interconnected network,the splitting criterion for accurately capturing the electrical center in real time is the prerequisite of power grid splitting.This paper studies the features of electric quantity in the electrical center in aspect of the instantaneous frequency,and proposes the out-of-step splitting criterion for power systems based on bus voltage frequency.Firstly,through the establishment and solution to the out-of-step model of the power grid,the analytical expression of the voltage frequency at any position is obtained in the out-of-step oscillation,and the voltage frequency features of electrical center and non-electrical center are analyzed in details.Then,this paper constructs the typical scene of migration of electrical center to study the change rules of voltage frequency.Finally,the splitting criterion based on bus voltage frequency is proposed as well as the instruction for use.This criterion is easy to be realized and can adapt to the migration of electrical center.Also it is free from the limits of power network structure and operational mode.Simulation results of CEPRI-36 system and interconnected network example of one actual region verify the accuracy and the effectiveness of the proposed criterion.展开更多
Active splitting control utilizes real-time decision and system-level splitting to prevent cascading blackouts and to maintain power supply under severe disturbances. Splitting strategy searching(SSS) is one of the mo...Active splitting control utilizes real-time decision and system-level splitting to prevent cascading blackouts and to maintain power supply under severe disturbances. Splitting strategy searching(SSS) is one of the most crucial issues in active splitting control for deciding‘‘where to split’’. SSS determines the splitting surface in real time to properly divide the asynchronous generators into isolated islands with an optimal control effect. In this paper, an SSS approach that focuses on island stability is presented. The proposed SSS approach is designed to ensure a rational stability margin and regulation ability on each island during and after the transient process of system splitting. This method includes the active/reactive power flow feasibility constraints and voltage/angle stability constraints in the steady state as well as the frequencyresponse capability constraints in the transient process. By considering the island stability constraints in the SSS, the proposed approach can avoid the splitting strategies with poor stability performance. Therefore, the major advantage of the proposed approach is that it can ensure better island static and transient stability during and after the splitting control. In addition, the entire model is formulated as a mixed-integer second-order cone programming(MISOCP)model. Thus, it can be rapidly solved by using commercial optimization solvers. Numerical simulations of a realistic provincial power system in central China demonstrate thevalidity of the proposed approach and the necessity of considering the island stability issues.展开更多
High electrical conductivity guarantees a rapid electron transfer and thus plays an important role in electrocatalysis.In particular,for the single atom catalysts(SACs),to facilitate interaction between the single ato...High electrical conductivity guarantees a rapid electron transfer and thus plays an important role in electrocatalysis.In particular,for the single atom catalysts(SACs),to facilitate interaction between the single atom and supports,precisely engineering the conductivity represents a promising strategy to design SACs with high electrochemical efficiency.Here we show rhodium(Rh)SAC anchored on Co_(3)O_(4) nanosheets arrays on nickel foam(NF),which is modified by a facile phosphorus(P-doped Rh SACCo_(3)O_(4)/NF),possessing an appropriate electronic structure and high conductivity for electrocatalytic reaction.With the introduction of P atom in the lattice,the electrocatalyst demonstrates outstanding alkaline oxygen evolution reaction(OER)activity with 50 mA·cm^(−2) under overpotential of 268 mV,6 times higher than that of Ir/C/NF.More interestingly,the P-doped Rh SAC-Co_(3)O_(4)/NF can get 50 mA·cm^(−2) at only 1.77 V for overall water splitting.Both electrical conductivity studies and density functional theory(DFT)calculations reveal that the high conductivity at grain boundary improves the charge transfer efficiency of the Rh catalytic center.Furthermore,other noble-metal(Ir,Pd,and Ru)doped Co_(3)O_(4) nanosheets arrays are prepared to exhibit the general efficacy of the phosphorus doping strategy.展开更多
Electrochemical water splitting is regarded as the most auspicious technology for renewable sources,transport,and storage of hydrogen energy.Currently,noble Pt metal and noble-metal oxides(IrO_(2)and RuO_(2))are recog...Electrochemical water splitting is regarded as the most auspicious technology for renewable sources,transport,and storage of hydrogen energy.Currently,noble Pt metal and noble-metal oxides(IrO_(2)and RuO_(2))are recognized as state-of-the-art electrocatalysts for both the hydrogen evolution reaction(HER)and oxygen evolution reaction(OER),respectively.Searching for earth-abundant electrocatalysts for the HER and OER with remarkable performance and high stability to replace precious metals plays a significant role in the commercial application of electrochemical water splitting.In this review,recent advancements in nanostructured transition metal electrocatalysts are assessed through the selected examples of nitrides,carbides,phosphides,sulfides,borides,layered double hydroxides,and oxides.Recent breakthroughs in nanostructured transition metal electrocatalysts are discussed in terms of their mechanisms,controllable production,structural design,and innovative strategies for boosting their performance.For instance,most nanostructured transition metal electrocatalysts for overall water splitting(OWS)only function well in neutral and alkaline solutions.Finally,current research challenges and future perspectives for increasing the performance of nanostructured transition metals for OWS are proposed.展开更多
Electrocatalytic water splitting is crucial to renewable and clean hydrogen generation.Achieving high efficiency and stability in hydrogen generation by freshwater/seawater electrolysis at a high current density(HCD)u...Electrocatalytic water splitting is crucial to renewable and clean hydrogen generation.Achieving high efficiency and stability in hydrogen generation by freshwater/seawater electrolysis at a high current density(HCD)using low-cost electrode materials is of utmost importance for the future hydrogen economy.However,conventional freshwater/seawater electrolysis suffers from low current density due to inefficient electrocatalysts and competitive reactions of the chlorine evolution reaction(ClER),consequently hampering its industrial adoption.Advanced surface and interface engineering techniques are essential for the development of efficient and long-lasting electrodes for freshwater and seawater electrolysis at HCD.In the review,we begin by discussing the fundamental aspects of freshwater/seawater splitting,focusing on recent advancements and strategies to increase the efficiency at HCD.We then comprehensively discuss the rational design strategies for the hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)at HCD together with the associated fundamental electrode reactions by considering the thermodynamic and kinetic aspects of the catalytic efficiency,selectivity,and corrosion resistance.It is followed by a discussion of some existing issues and limitations of HCD freshwater/seawater splitting and viable solutions.Finally,the issues facing the field and possible future research directions for efficient large-scale industrial water splitting are discussed.展开更多
基金financially supported by the National Natural Science Foundation of China(51572166,52102070)the Program for Professor of Special Appointment at Shanghai Institutions of Higher Learning(GZ2020012)+4 种基金the Key Research Project of Zhejiang Laboratory(2021PE0AC02)the China Postdoctoral Science Foundation(2021M702073)BAJC R&D Fund Projects(BA23011)Australian Research Council Future Fellowships(FT230100436)the Shanghai Technical Service Center for Advanced Ceramics Structure Design and Precision Manufacturing(20DZ2294000)。
文摘Cobalt-based electrocatalysts take advantage of potentially harmonizable microstructure and flexible coupling effects compared to commercial noble metal-based catalytic materials.However,conventional water electrolysis systems based on cobalt-based monofunctional hydrogen evolution reaction(HER)or oxygen evolution reaction(OER)catalysts have certain shortcomings in terms of resource utilization and universality.In contrast,cobalt-based bifunctional catalysts(CBCs)have attracted much attention in recent years for overall water splitting systems because of their practicality and reduced preparation cost of electrolyzer.This review aims to address the latest development in CBCs for total hydrolysis.The main modification strategies of CBCs are systematically classified in water electrolysis to provide an overview of how to regulate their morphology and electronic configuration.Then,the catalytic performance of CBCs in total-hydrolysis is summarized according to the types of cobalt-based phosphides,sulfides and oxides,and the mechanism of strengthened electrocatalytic ability is emphasized through combining experiments and theoretical calculations.Future efforts are finally suggested to focus on exploring the dynamic conversion of reaction intermediates and building near-industrial CBCs,designing advanced CBC materials through micro-modulation,and addressing commercial applications.
基金the Natural Science Foundation of China(Grant Nos.21871065,22209129,and 22071038)the Heilongjiang Touyan Team(HITTY-20190033)+3 种基金High-Level Innovation and Entrepreneurship(QCYRCXM-2022-123)the Talent Project of Qinchuangyuan and Interdisciplinary Research Foundation of HIT(IR2021205)Professor Li acknowledges the financial support from the“Young Talent Support Plan”of Xi'an Jiaotong University(HG6J024)the“Young Talent Lift Plan”of Xi'an city(095920221352).
文摘Sustainable production of H2 through electrochemical water splitting is of great importance in the foreseeable future.Transition-metal metaphosphates(TMMPs)have a three-dimensional(3D)open-framework structure and a high content of P(which exists as PO3-),and therefore have been recognized as highly efficient catalysts for oxygen evolution reaction(OER)and the bottleneck of electrochemical water splitting.Furthermore,TMMPs can also contribute to hydrogen evolution reaction(HER)in alkaline and neutral media by facilitating water dissociation,and thus,overall water splitting can be achieved using this kind of material.In this timely review,we summarize the recent advances in the synthesis of TMMPs and their applications in OER and HER.We present a brief introduction of the structure and synthetic strategies of TMMPs in the first two parts.Then,we review the latest progress made in research on TMMPs as OER,HER,and overall water-splitting electrocatalysts.In this part,the intrinsic activity of TMMPs as well as the current strategy for improving the catalytic activity will be discussed systematically.Finally,we present the future opportunities and the remaining challenges for the application of TMMPs in the electrocatalysis field.
文摘Action recognition has been recognized as an activity in which individuals’behaviour can be observed.Assembling profiles of regular activities such as activities of daily living can support identifying trends in the data during critical events.A skeleton representation of the human body has been proven to be effective for this task.The skeletons are presented in graphs form-like.However,the topology of a graph is not structured like Euclideanbased data.Therefore,a new set of methods to perform the convolution operation upon the skeleton graph is proposed.Our proposal is based on the Spatial Temporal-Graph Convolutional Network(ST-GCN)framework.In this study,we proposed an improved set of label mapping methods for the ST-GCN framework.We introduce three split techniques(full distance split,connection split,and index split)as an alternative approach for the convolution operation.The experiments presented in this study have been trained using two benchmark datasets:NTU-RGB+D and Kinetics to evaluate the performance.Our results indicate that our split techniques outperform the previous partition strategies and aremore stable during training without using the edge importance weighting additional training parameter.Therefore,our proposal can provide a more realistic solution for real-time applications centred on daily living recognition systems activities for indoor environments.
基金supported by the National Natural Science Foundation of China(52202261)Outstanding Youth Foundation of Shandong Province,China(ZR2019JQ 14)Taishan Scholar Young Talent Program(tsqn201909114).
文摘Bismuth vanadate(BiVO_(4))is an excellent photoanode material for photoelectrochemical(PEC)water splitting system,possessing high theoretical photoelectrocatalytic conversion efficiency.However,the actual PEC activity and stability of BiVO_(4)are faced with great challenges due to factors such as severe charge recombination and slow water oxidation kinetics at the interface.Therefore,various interface regulation strategies have been adopted to optimize the BiVO_(4)photoanode.This review provides an in-depth analysis for the mechanism of interface regulation strategies from the perspective of factors affecting the PEC performance of BiVO_(4)photoanodes.These interface regulation strategies improve the PEC performance of BiVO_(4)photoanode by promoting charge separation and transfer,accelerating interfacial reaction kinetics,and enhancing stability.The research on the interface regulation strategies of BiVO_(4)photoanode is of great significance for promoting the development of PEC water splitting technology.At the same time,it also has inspiration for providing new ideas and methods for designing and preparing efficient and stable catalytic materials.
基金Supported by National Key Technology R&D Program(No.2013BAJ06B)
文摘In flexible job-shop batch scheduling problem, the optimal lot-size of different process is not always the same because of different processing time and set-up time. Even for the same process of the same workpiece, the choice of machine also affects the optimal lot-size. In addition, different choices of lot-size between the constrained processes will impact the manufacture efficiency. Considering that each process has its own appropriate lot-size, we put forward the concept of scheduling with lot-splitting based on process and set up the scheduling model of lot-splitting to critical path process as the core. The model could update the set of batch process and machine selection strategy dynamically to determine processing route and arrange proper lot-size for different processes, to achieve the purpose of optimizing the makespan and reducing the processing batches effectively. The experiment results show that, comparing with lot-splitting scheduling scheme based on workpiece, this model optimizes the makespan and improves the utilization efficiency of the machine. It also greatly decreases the machined batches (42%) and reduces the complexity of shop scheduling production management.
基金supported by the National Natural Science Foundation of China(Grant No.62273207,61821004,62350083,62192755)the Future Young Scholars Program of Shandong University,China.
文摘Out-of-step oscillation is a very destructive physical phenomenon in power system, which could directly cause big blackout accompanied by serious sociology-economic impacts. Out-of-step splitting control is an indispensable means, which could protect the system from major shocks of out-of-step oscillation. After years of development, it has achieved certain amount of research results. Have the existing methods been able to meet the requirements of out-of-step splitting? What improvements are needed? Under this background, this review is written. It combs the development of out-of-step splitting control technologies and analyzes the technical routes and characteristics of different methods. It points out the contradiction between rapidity and optimality is the biggest technical problem, existing in both the traditional local measurement based out-of-step splitting protection and the wide-area information based out-of-step splitting protection. It further points out that the advantages of the two types of protections can be combined with the unique physical characteristics of the out-of-step center to form a more advantageous splitting strategy. Besides, facing the fact of large-scale renewable energy access to power grid in recent years, this review also analyzes the challenges brought by it and provides some corresponding suggestions. It is hoped to provide some guidance for the subsequent research work.
基金funded by the earmarked fund for China Agriculture Research System(CARS-03-19)the National Natural Science Foundation of China(51879267 and 51709264)+1 种基金the Open Fund Projects of the Agricultural Environment Experimental Station of Minstry of Agriculture and Rural Affairs,China(FIRI2021040103)the Agricultural Science and Technology Innovation Program(ASTIP)of Chinese Academy of Agricultural Sciences。
文摘Excessive application of nitrogen (N) fertilizer is the main cause of N loss and poor use efficiency in winter wheat (Triticum aestivum L.) production in the North China Plain (NCP).Drip fertigation is considered to be an effective method for improving N use efficiency and reducing losses,while the performance of drip fertigation in winter wheat is limited by poor N scheduling.A two-year field experiment was conducted to evaluate the growth,development and yield of drip-fertigated winter wheat under different split urea (46%N,240 kg ha^(-1)) applications.The six treatments consisted of five fertigation N application scheduling programs and one slow-release fertilizer (SRF) application.The five N scheduling treatments were N0–100 (0%at sowing and 100%at jointing/booting),N25–75 (25%at sowing and 75%at jointing and booting),N50–50(50%at sowing and 50%at jointing/booting),N75–25 (75%at sowing and 25 at jointing/booting),and N100–0 (100%at sowing and 0%at jointing/booting).The SRF (43%N,240 kg ha^(-1)) was only used as fertilizer at sowing.Split N application significantly (P<0.05) affected wheat grain yield,yield components,aboveground biomass (ABM),water use efficiency(WUE) and nitrogen partial factor productivity (NPFP).The N50–50 and SRF treatments respectively had the highest yield(8.84 and 8.85 t ha^(-1)),ABM (20.67 and 20.83 t ha^(-1)),WUE (2.28 and 2.17 kg m^(-3)) and NPFP (36.82 and 36.88 kg kg^(-1)).This work provided substantial evidence that urea-N applied in equal splits between basal and topdressing doses compete economically with the highly expensive SRF for fertilization of winter wheat crops.Although the single-dose SRF could reduce labor costs involved with the traditional method of manual spreading,the drip fertigation system used in this study with the N50–50 treatment provides an option for farmers to maintain wheat production in the NCP.
基金National Natural Science Foundation of China(41702037,41831285,and 21773114).
文摘Hydrogen can be sustainably produced through photoelectrochemical(PEC)water splitting.The process of PEC water splitting is composed of two vital half-reactions:water oxidation to O2 on photoanode,and proton reduction to H2 on photocathode.Both in thermodynamics and kinetics,the oxidation of water on photoanode is much more challenging,because the formation of O2 involves the four-holes reaction process that is more difficult than the two-protons reduction.Accordingly,the oxidation of water into O2 is the rate-determining reaction for PEC water splitting,which is closely affected by the light harvesting,charge separation and transfer,as well as surface activity of photoanode.In principle,water oxidation is initiated by the photo-excited charge of photoanode.In this review,we took hematite photoanode as a typical example to illustrate the progress in modifying the charge separation and migration property of metal-oxide photoanodes for water oxidation.The typical strategies adopted to facilitate the charge transfer and separation of hematite photoanode were specifically summarized.In addition,the views designing and developing hematite photoanode with high-performance for water oxidation were presented.This review provides comprehensive information about the state-of-the-art progress of hematite-based photoanodes and forecast the developing directions of photoanode materials for solar water splitting.
基金This work was supported by State Grid Corporation of China,Major Projects on Planning and Operation Control of Large Scale Grid(No.SGCC-MPLG029-2012)China Postdoctoral Science Foundation(No.2014M552080).
文摘Under the background of complicated interconnected network,the splitting criterion for accurately capturing the electrical center in real time is the prerequisite of power grid splitting.This paper studies the features of electric quantity in the electrical center in aspect of the instantaneous frequency,and proposes the out-of-step splitting criterion for power systems based on bus voltage frequency.Firstly,through the establishment and solution to the out-of-step model of the power grid,the analytical expression of the voltage frequency at any position is obtained in the out-of-step oscillation,and the voltage frequency features of electrical center and non-electrical center are analyzed in details.Then,this paper constructs the typical scene of migration of electrical center to study the change rules of voltage frequency.Finally,the splitting criterion based on bus voltage frequency is proposed as well as the instruction for use.This criterion is easy to be realized and can adapt to the migration of electrical center.Also it is free from the limits of power network structure and operational mode.Simulation results of CEPRI-36 system and interconnected network example of one actual region verify the accuracy and the effectiveness of the proposed criterion.
文摘Active splitting control utilizes real-time decision and system-level splitting to prevent cascading blackouts and to maintain power supply under severe disturbances. Splitting strategy searching(SSS) is one of the most crucial issues in active splitting control for deciding‘‘where to split’’. SSS determines the splitting surface in real time to properly divide the asynchronous generators into isolated islands with an optimal control effect. In this paper, an SSS approach that focuses on island stability is presented. The proposed SSS approach is designed to ensure a rational stability margin and regulation ability on each island during and after the transient process of system splitting. This method includes the active/reactive power flow feasibility constraints and voltage/angle stability constraints in the steady state as well as the frequencyresponse capability constraints in the transient process. By considering the island stability constraints in the SSS, the proposed approach can avoid the splitting strategies with poor stability performance. Therefore, the major advantage of the proposed approach is that it can ensure better island static and transient stability during and after the splitting control. In addition, the entire model is formulated as a mixed-integer second-order cone programming(MISOCP)model. Thus, it can be rapidly solved by using commercial optimization solvers. Numerical simulations of a realistic provincial power system in central China demonstrate thevalidity of the proposed approach and the necessity of considering the island stability issues.
基金supported by the National Natural Science Foundation of China(No.51972048)Colleges and Universities in Hebei Province Science and Technology Research Project(No.ZD2021404).
文摘High electrical conductivity guarantees a rapid electron transfer and thus plays an important role in electrocatalysis.In particular,for the single atom catalysts(SACs),to facilitate interaction between the single atom and supports,precisely engineering the conductivity represents a promising strategy to design SACs with high electrochemical efficiency.Here we show rhodium(Rh)SAC anchored on Co_(3)O_(4) nanosheets arrays on nickel foam(NF),which is modified by a facile phosphorus(P-doped Rh SACCo_(3)O_(4)/NF),possessing an appropriate electronic structure and high conductivity for electrocatalytic reaction.With the introduction of P atom in the lattice,the electrocatalyst demonstrates outstanding alkaline oxygen evolution reaction(OER)activity with 50 mA·cm^(−2) under overpotential of 268 mV,6 times higher than that of Ir/C/NF.More interestingly,the P-doped Rh SAC-Co_(3)O_(4)/NF can get 50 mA·cm^(−2) at only 1.77 V for overall water splitting.Both electrical conductivity studies and density functional theory(DFT)calculations reveal that the high conductivity at grain boundary improves the charge transfer efficiency of the Rh catalytic center.Furthermore,other noble-metal(Ir,Pd,and Ru)doped Co_(3)O_(4) nanosheets arrays are prepared to exhibit the general efficacy of the phosphorus doping strategy.
基金the Guangxi Science and Technology Project(AA17204083,AB16380030)the link project of the National Natural Science Foundation of China and Fujian Province(U1705252)the Natural Science Foundation of Guangdong Province(2015A030312007).
文摘Electrochemical water splitting is regarded as the most auspicious technology for renewable sources,transport,and storage of hydrogen energy.Currently,noble Pt metal and noble-metal oxides(IrO_(2)and RuO_(2))are recognized as state-of-the-art electrocatalysts for both the hydrogen evolution reaction(HER)and oxygen evolution reaction(OER),respectively.Searching for earth-abundant electrocatalysts for the HER and OER with remarkable performance and high stability to replace precious metals plays a significant role in the commercial application of electrochemical water splitting.In this review,recent advancements in nanostructured transition metal electrocatalysts are assessed through the selected examples of nitrides,carbides,phosphides,sulfides,borides,layered double hydroxides,and oxides.Recent breakthroughs in nanostructured transition metal electrocatalysts are discussed in terms of their mechanisms,controllable production,structural design,and innovative strategies for boosting their performance.For instance,most nanostructured transition metal electrocatalysts for overall water splitting(OWS)only function well in neutral and alkaline solutions.Finally,current research challenges and future perspectives for increasing the performance of nanostructured transition metals for OWS are proposed.
基金support from the National Natural Science Foundation of China(grant no.U2004210)the Basic Research Program of Shenzhen Municipal Science and Technology Innovation Committee(grant nos.JCYJ20210324141613032 and JCYJ202308073003128)+4 种基金the Special Fund Project for Science and Technology Innovation Strategy of Guangdong Province(grant nos.STKJ202209083 and STKJ202209077)Guangdong Basic and Applied Basic Research Foundation(grant no.2022A1515240007)Jieyang Science and Technology Project(grant no.skjcx039)City University of Hong Kong Strategic Research Grant(grant no.SRG 7005505)City University of Hong Kong Donation Research Grant(grant no.DON-RMG 9229021).
文摘Electrocatalytic water splitting is crucial to renewable and clean hydrogen generation.Achieving high efficiency and stability in hydrogen generation by freshwater/seawater electrolysis at a high current density(HCD)using low-cost electrode materials is of utmost importance for the future hydrogen economy.However,conventional freshwater/seawater electrolysis suffers from low current density due to inefficient electrocatalysts and competitive reactions of the chlorine evolution reaction(ClER),consequently hampering its industrial adoption.Advanced surface and interface engineering techniques are essential for the development of efficient and long-lasting electrodes for freshwater and seawater electrolysis at HCD.In the review,we begin by discussing the fundamental aspects of freshwater/seawater splitting,focusing on recent advancements and strategies to increase the efficiency at HCD.We then comprehensively discuss the rational design strategies for the hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)at HCD together with the associated fundamental electrode reactions by considering the thermodynamic and kinetic aspects of the catalytic efficiency,selectivity,and corrosion resistance.It is followed by a discussion of some existing issues and limitations of HCD freshwater/seawater splitting and viable solutions.Finally,the issues facing the field and possible future research directions for efficient large-scale industrial water splitting are discussed.