Outburst of coal and gas represents a significant risk to the health and safety of mine personnel working in development and longwall production face areas.There have been over 878 outburst events recorded in twenty-t...Outburst of coal and gas represents a significant risk to the health and safety of mine personnel working in development and longwall production face areas.There have been over 878 outburst events recorded in twenty-two Australian underground coal mines.Most outburst incidents have been associated with abnormal geological conditions.Details of Australian outburst incidents and mining experience in conditions where gas content was above current threshold levels are presented and discussed.Mining experience suggests that for gas con-tent below 9.0 m^3/t,mining in carbon dioxide(CO2)rich seam gas conditions does not pose a greater risk of outburst than mining in CH4 rich seam gas conditions.Mining experience also suggests that where no abnormal geological structures are present that mining in areas with gas content greater than the current accepted threshold levels can be undertaken with no discernible increase in outburst risk.The current approach to determining gas content threshold limits in Australian mines has been effective in prevent-ing injury from outburst,however operational experience suggests the current method is overly conser-vative and in some cases the threshold limits are low to the point that they provide no significant reduction in outburst risk.Other factors that affect outburst risk,such as gas pressure,coal toughness and stress and geological structures are presently not incorporated into outburst threshold limits adopted in Australian mines.These factors and the development of an outburst risk index applicable to Australian underground coal mining conditions are the subject of ongoing research.展开更多
Coal and gas outburst is a frequent dynamic disaster during underground coal mining activities.After about 150 years of exploration,the mechanisms of outbursts remain unclear to date.Studies on outburst mechanisms wor...Coal and gas outburst is a frequent dynamic disaster during underground coal mining activities.After about 150 years of exploration,the mechanisms of outbursts remain unclear to date.Studies on outburst mechanisms worldwide focused on the physicochemical and mechanical properties of outburst-prone coal,laboratory-scale outburst experiments and numerical modeling,mine-site investigations,and doctrines of outburst mechanisms.Outburst mechanisms are divided into two categories:single-factor and multi-factor mechanisms.The multi-factor mechanism is widely accepted,but all statistical phenomena during a single outburst cannot be explained using present knowledge.Additional topics about outburst mechanisms are proposed by summarizing the phenomena that need precise explanation.The most appealing research is the microscopic process of the interaction between coal and gas.Modern physical-chemical methods can help characterize the natural properties of outburst-prone coal.Outburst experiments can compensate for the deficiency of first-hand observation at the scene.Restoring the original outburst scene by constructing a geomechanical model or numerical model and reproducing the entire outburst process based on mining environment conditions,including stratigraphic distribution,gas occurrence,and geological structure,are important.Future studies can explore outburst mechanisms at the microscale.展开更多
Accurate prediction of the hydrographs of outburst floods induced by landslide dam overtopping failure is necessary for hazard prevention and mitigation. In this study, flume model tests on the breaching of landslide ...Accurate prediction of the hydrographs of outburst floods induced by landslide dam overtopping failure is necessary for hazard prevention and mitigation. In this study, flume model tests on the breaching of landslide dams were conducted. Unconsolidated soil materials with wide grain size distributions were used to construct the dam. The effects of different upstream inflow discharges and downstream bed soil erosion on the outburst peak discharge were investigated. Experimental results reveal that the whole hydrodynamic process of landslide dam breaching can be divided into three stages as defined by clear inflection points and peak discharges. The larger the inflow discharge, the shorter the time it takes to reach the peak discharge, and the larger the outburst flood peak discharge. The scale of the outburst floods was found to be amplified by the presence of an erodible bed located downstream of the landslide dam. This amplification decreases with the increase of upstream inflow. In addition, the results show that the existence of an erodible bed increases the density of the outburst flow, increasing its probability of transforming from a sediment flow to a debris flow.展开更多
Desorption rate index(DRI)was presented to the Australian underground coal industry in 1995 as a means for determining outburst threshold limits for Australian coal seams.DRI is a measure of the gas volume released fr...Desorption rate index(DRI)was presented to the Australian underground coal industry in 1995 as a means for determining outburst threshold limits for Australian coal seams.DRI is a measure of the gas volume released from a coal sample in the first 30 s of crushing during the Q3 stage of gas content testing,multiplied by the ratio between measured Q3 and QM.Relationships were identified between QM and DRI for both CO2 and CH4 rich coal samples collected from the Bulli Seam at West Cliff Colliery and that identified relationship was referred to as the Bulli Seam Benchmark.The outburst mining gas content threshold limit values specified for the Bulli Seam at that time,when applied to the QM-DRI Bulli Seam benchmark,was shown to closely align with a DRI value of 900(DRI900),for both CO2 and CH4 rich seam gas conditions.The Australian coal industry adopted the DRI900 as the basis for determining outburst gas content TLV for Australian coal seams.Outburst mining experience in Australia has shown that gas content is not the only significant factor that impacts outburst risk,as all significant outburst events have been associated with abnormal geological conditions,such as faults and dykes.Therefore,assessing the potential application of additional outburst risk factors,to accurately define outburst risk zones,set safe mining threshold levels,and determine appropriate mining controls,warrants further investigation.Several Australian coal mines have implemented mining procedures enabling mining to continue in areas with gas content greater than the TLV determined using the DRI900 approach,without inducing an outburst.There is a broad lack of understanding among Australian coal mine operators as to the procedure and calculations used to determine DRI.Also,there has been growing concern regarding the accuracy and validity of the DRI900 method for determining outburst TLV.A comprehensive set of gas data has been collected from Australian coal seams,including the Bulli Seam,and this data has been used to investigate the DRI,Bulli Seam Benchmark,and the applicability of using DRI900 as the basis for assessing outburst risk and determining gas content TLV.The results are presented and discussed.展开更多
Based on the engineering observations of coal and gas outbursts during mining processes and the experimental results,we built a thin plate mechanical model for layered and spalled coal bodies.We studied the mechanical...Based on the engineering observations of coal and gas outbursts during mining processes and the experimental results,we built a thin plate mechanical model for layered and spalled coal bodies.We studied the mechanical mechanism of outbursts,due to instability,of thin plates of coal rocks under the action of in-plane load and normal load,by using the catastrophe theory.The total potential function is derived for the layered rock system,the cusp catastrophe model for the system is established,the bifurcation set that makes the system unstable is given,the process in which gradual change of action forces leads to catastrophic change of state is analyzed,and the effect of movement path of point(P,q) in the control space on the stability of rock plate is analyzed.The study results show that during the process of coal mining,the stability of the layered coal bodies depends not only on its physical properties and dimensions but also on the magnitudes and changing paths of the in-plane load and the normal load.When the gas in the coal bodies ahead of the mining face is pre-drained,the gas pressure can be reduced and the normal load q can be lowered.Consequently,disasters such as coal and gas outbursts can be effectively prevented.展开更多
The sudden and violent nature of coal and gas outbursts continues to pose a serious threat to coal mine safety in China. One of the key issues is to predict the occurrence of outbursts. Current methods that are used f...The sudden and violent nature of coal and gas outbursts continues to pose a serious threat to coal mine safety in China. One of the key issues is to predict the occurrence of outbursts. Current methods that are used for predicting the outbursts in China are considered to be inadequate, inappropriate or impractical in some seam conditions. In recent years, Huainan Mining Industry Group(Huainan) in China and the Commonwealth Scientific and Industrial Research Organisation(CSIRO) in Australia have been jointly developing technology based on gas content in coal seams to predict the occurrence of outbursts in Huainan. Significant progresses in the technology development have been made, including the development of a more rapid and accurate system in determining gas content in coal seams, the invention of a sampling-while-drilling unit for fast and pointed coal sampling, and the coupling of DEM and LBM codes for advanced numerical simulation of outburst initiation and propagation. These advances are described in this paper.展开更多
This paper discribes a one-dimensional flow model to explain the basic mechanism of coal-gas outbursts.A break-start criterion of coal,as the elementary outburst criterion,is given approximately.In this ideal model,th...This paper discribes a one-dimensional flow model to explain the basic mechanism of coal-gas outbursts.A break-start criterion of coal,as the elementary outburst criterion,is given approximately.In this ideal model,the tectonic pressure before excavation,as a load on coal body,affects the break-start and then the flow field.The flow field is decoupled with the stress field,so that the gas seepage through unbroken coal body,break-start and consequent two-phase flow,and pure gas flow can be analysed independently of the stress field. The tunnelling,an external disturbance that makes the seepage intensify relatively,is an essential factor for initiating outburst.Under steady tunnelling,seepage ought to tend to be steadily progressive.From its asymptotic solution initiation criterion is obtained.This is described by three conditions,possibility condi- tion—tectonic pressure condition,incubation condition—tunnelling or gas condition and triggering condi- tion—seepage velocity condition.展开更多
With the global warming,the disasters of Glacier Lake Outburst Flood(GLOF) have taken place frequently in Tibet in recent years and attracted more and more attention.A systematic survey was conducted on the 19 GLOFs i...With the global warming,the disasters of Glacier Lake Outburst Flood(GLOF) have taken place frequently in Tibet in recent years and attracted more and more attention.A systematic survey was conducted on the 19 GLOFs in Tibet to study their two main mechanisms.Investigations indicated that all the events occurred in end-moraine lakes,and the outburst occurred partially and instantly.And the breach had the shape of an arc or a trapezoid in overflow outburst and its top width was 3-5 times more than the height.The two main mechanisms of GLOFs in Tibetan end-moraine Lake were overflow and piping,and the overflow mechanism caused by iceberg collapse was dominated in most cases.A formula was proposed to calculate the critical thickness of iceberg tongue that determines the collapse.Granular analysis of the moraine materials revealed that seepage deformation is crucial in the outburst process.Finally,we conducted a case study of the Guangxiecuo Lake to show its possible process of outburst and estimated the peak discharge of the resulted flood.展开更多
Coal and gas outburst is one of the main gas hazards in coal mines. However, due to the risks of the coal and gas outburst, the field test is difficult to complete. Therefore, an effective approach to studying the mec...Coal and gas outburst is one of the main gas hazards in coal mines. However, due to the risks of the coal and gas outburst, the field test is difficult to complete. Therefore, an effective approach to studying the mechanism and development of outburst is to conduct the similar physical simulation. However, the similarity criteria and similar materials in outburst are the key factors which restrict the development of physical simulation. To solve those problems, this paper has established similarity criteria base on mechanics model, solid-fluid coupling model and energy model, and presented high similar materials. Combining with three groups of similar number, and considering similar mechanical parameters and deformation and failure regularity, the similarity criteria of outburst is determined on the basis of the energy model. According to those criteria, we put forward a similar material consists of pulverized coal, cement, sand, activated carbon, and water. The similar material has high compressive strength and the accordant characteristics with the raw coal, include density, porosity, adsorption, desorption. The new research is promising for preventing and controlling gas hazards in the future.展开更多
Gas outbursts in underground mining occur under conditions of high gas desorption rate and gas content,combined with high stress regime, low coal strength and high Young's modulus. This combination of gas and stre...Gas outbursts in underground mining occur under conditions of high gas desorption rate and gas content,combined with high stress regime, low coal strength and high Young's modulus. This combination of gas and stress factors occurs more often in deep mining. Hence, as the depth of mining increases, the potential for outburst increases. This study proposes a conceptual model to evaluate outburst potential in terms of an outburst indicator. The model was used to evaluate the potential for gas outburst in two mines, by comparing numerical simulations of gas flow behavior under typical stress regimes in an Australian gassy mine extracting a medium-volatile bituminous coal, and a Chinese gassy coal mine in Qinshui Basin(Shanxi province) extracting anthracite coal. We coupled the stress simulation program(FLAC3D) with the gas simulation program(SIMED II) to compute the stress and gas pressure and gas content distribution following development of a roadway into the targeted coal seams. The data from gas content and stress distribution were then used to quantify the intensity of energy release in the event of an outburst.展开更多
Coal and gas outbursts are dynamic disasters in which a large mass of gas and coal suddenly emerges in a mining space within a split second.The interaction between the gas pressure and stress environment is one of the...Coal and gas outbursts are dynamic disasters in which a large mass of gas and coal suddenly emerges in a mining space within a split second.The interaction between the gas pressure and stress environment is one of the key factors that induce coal and gas outbursts.In this study,first,the coupling relationship between the gas pressure in the coal body ahead of the working face and the dynamic load was investigated using experimental observations,numerical simulations,and mine-site investigations.It was observed that the impact rate of the dynamic load on the gas-bearing coal can significantly change the gas pressure.The faster the impact rate,the speedier the increase in gas pressure.Moreover,the gas pressure rise was faster closer to the impact interface.Subsequently,based on engineering background,we proposed three models of stress and gas pressure distribution in the coal body ahead of the working face:static load,stress disturbance,and dynamic load conditions.Finally,the gas pressure distribution and outburst mechanism were investigated.The high concentration of gas pressure appearing at the coal body ahead of the working face was caused by the dynamic load.The gas pressure first increased gradually to a peak value and then decreased with increasing distance from the working face.The increase in gas pressure plays a major role in outburst initiation by resulting in the ability to more easily reach the critical points needed for outburst initiation.Moreover,the stronger the dynamic load,the greater the outburst initiation risk.The results of this study provide practical guidance for the early warning and prevention of coal and gas outbursts.展开更多
A proposed concept of outburst initiation examines the release of a large amount of gas from coal seams resulted from disintegrating thermodynamically unstable coal organic matter(COM).A coal microstructure is assumed...A proposed concept of outburst initiation examines the release of a large amount of gas from coal seams resulted from disintegrating thermodynamically unstable coal organic matter(COM).A coal microstructure is assumed to getting unstable due to shear component appearance triggered by mining operations and tectonic activities considered as the primary factor while COM disintegration under the impact of weak electric fields can be defined as a secondary one.The energy of elastic deformations stored in the coal microstructure activates chemical reactions to tilt the energy balance in a“coal–gas”system.Based on this concept a mathematical model of a gas flow in the coal where porosity and permeability are changed due to chemical reactions has been developed.Using this model we calculated gas pressure changes in the pores initiated by gas release near the working face till satisfying force and energy criteria of outburst.The simulation results demonstrated forming overpressure zone in the area of intensive gas release with enhanced porosity and permeability.The calculated outburst parameters are well combined with those evaluated by field measurements.展开更多
Coal and gas outburst is an extremely complex dynamic disaster in coal mine production process which will damage casualties and equipment facilities, and disorder the ventilation system by suddenly ejecting a great am...Coal and gas outburst is an extremely complex dynamic disaster in coal mine production process which will damage casualties and equipment facilities, and disorder the ventilation system by suddenly ejecting a great amount of coal and gas into roadway or working face. This paper analyzed the interaction among the three essential elements of coal and gas outburst dynamic system. A stress-seepage-damage coupling model was established which can be used to simulate the evolution of the dynamical system, and then the size scale of coal and gas outburst dynamical system was investigated. Results show that the dynam- ical system is consisted of three essential elements, coal-gas medium (material basis), geology dynamic environment (internal motivation) and mining disturbance (external motivation). On the case of CI 3 coal seam in Panyi Mine, the dynamical system exists in the range of 8-12 m in front of advancing face. The size scale will be larger where there are large geologic structures. This research plays an important guid- ing role for developing measures of coal and gas outburst prediction and prevention.展开更多
In this study, the Glacier Lake Outburst Flood(GLOF) that occurred over Kedarnath in June 2013 was modeled using integrated observations from the field and Remote Sensing(RS). The lake breach parameters such as area, ...In this study, the Glacier Lake Outburst Flood(GLOF) that occurred over Kedarnath in June 2013 was modeled using integrated observations from the field and Remote Sensing(RS). The lake breach parameters such as area, depth, breach, and height have been estimated from the field observations and Remote Sensing(RS) data. A number of modelling approaches, including Snow Melt Runoff Model(SRM), Modified Single Flow model(MSF), Watershed Management System(WMS), Simplified Dam Breach Model(SMPDBK) and BREACH were used to model the GLOF. Estimations from SRM produced a runoff of about 22.7 m3 during 16–17, June 2013 over Chorabari Lake. Bathymetry data reported that the lake got filled to its maximum capacity(3822.7 m3) due to excess discharge. Hydrograph obtained from the BREACH model revealed a peak discharge of about 1699 m3/s during an intense water flow episode that lasted for 10–15 minutes on 17 th June 2013. Excess discharge from heavy rainfall and snowmelt into the lake increased its hydrostatic pressure and the lake breached cataclysmically.展开更多
As coal and gas outburst is one of the most serious mine disasters, it is very important to at least control it if not prevent it from occurring. Injecting cement slurry or grouting into the coal seam can strengthen t...As coal and gas outburst is one of the most serious mine disasters, it is very important to at least control it if not prevent it from occurring. Injecting cement slurry or grouting into the coal seam can strengthen the seam, increase its rigidity coefficient(f), and reduce the volumetric expansion due to gas energy release.This paper reports the results of laboratory experiments on cement-based high water content slurry having different water-cement ratios(W/C) to be used for coal injection. The results show that as the W/C increases, the mobility of the slurry and its setting time increase. The compressive strength and rupture strength, however, are reduced. Furthermore, high W/C grout shows early strength after 7 days, which can be 80% of its 14-day compressive strength. To achieve rapid setting and early strength, the addition of Na_2SiO_3has proven to give the best result, when the concentration of the additive is 3%. The initial and final setting times are 13 and 21 min shorter than samples without Na_2SiO_3, while the compressive strength is more than double. As a retarder, the initial setting time can be extended to 83 min when tartaric acid of 0.4% concentration is added. Through the orthogonal experiment, the optimum recipe of the new high water content slurry has been determined to be: W/C = 2, tartaric acid = 0.2%, Na_2SiO_3= 3%, and12% bentonite. Reinforcement by injection simulation experiments show that the grouting radius of the new slurry mix is 250 mm when the applied grouting pressure is 60 k Pa, 7-day rupture strength and compressive strength are 5.2 and 6.4 MPa, respectively, and are 37% and 88% higher than ordinary cement grout. It can be concluded that the newly developed slurry mix is more effective than the ordinary mix for reinforcing coal and controlling gas outburst.展开更多
Based on catastrophe theory,we used the catastrophe progression method to predict the risk of coal and gas outbursts in coal mines.According to the major factors affecting coal and gas outbursts,we built a comprehensi...Based on catastrophe theory,we used the catastrophe progression method to predict the risk of coal and gas outbursts in coal mines.According to the major factors affecting coal and gas outbursts,we built a comprehensive evaluation index system and a coal and gas outburst prediction model.In addition,we performed a standard transformation for each index system;based on the degree the various indices affect the risk of an outburst,to make the data dimensionless.Based on the outburst data from eight mines,we determined catastrophe progression values and verified these values.The results show that:1) converting multi-dimensional problems into one-dimensional problems using this catastrophe progression method can simplify the steps of predicting coal and gas outbursts;2) when pre-determined catastrophe progression values are used to predict coal and gas outbursts,the predicting accuracy rate can be as high as 87.5%;3) the various coal mines have different factors inducing outbursts with varying importance of these factors and 4) the catastrophe progression values,calculated based on these factors,can be used effectively to predict the risk of outbursts in coal mines.展开更多
This research reviewed the mechanics and gas desorption properties of intact coal,and tested the crushing work ratios of different intact coals,and then,studied the stress conditions for the failure or crushing of int...This research reviewed the mechanics and gas desorption properties of intact coal,and tested the crushing work ratios of different intact coals,and then,studied the stress conditions for the failure or crushing of intact coal and the gas demand for the pulverization of intact coal particles.When a real-life outburst case is examined,the required minimum stress for intact coal outburst is estimated.The study concludes that the crushing work ratios of three intact coal samples vary from 294.3732 to 945.8048 J/m^(2).For the real-life case,more than 2300 MJ of transport work is needed,and 10062.09,7046.57 and 5895.47 m^(3) of gas is required when the gas pressure is 1,2 and 3 MPa,respectively.The crushing work exceeds the transport work and even reaches 13.96 times of the transport work.How to provide such an enormous crushing work is an energy-limiting factor for the outburst in intact coal.The strain energy is needed for the crushing work,and the required minimum stress is over 54.35 MPa,even reaching 300.44 MPa.These minimum stresses far exceed the in-situ vertical and horizontal stresses that can be provided at the 300–700 m mining depth range.展开更多
This paper presents an overview of mining seismicity, gas outburst and their origin. The internal relation of mining seismicity and gas outburst in the dynamic process is studied on the basis of the fact that these di...This paper presents an overview of mining seismicity, gas outburst and their origin. The internal relation of mining seismicity and gas outburst in the dynamic process is studied on the basis of the fact that these disasters sometimes occur simultaneously. The examples show a close relationship between mining seismicity and gas outburst in high gassy coal mines. It is proposed that strong mine shocks plus the response of low value and delay time are early warning signals. The mechanism of the relationship between mining seismicity and gas outburst is analyzed by using the location of mining shocks, focus mechanism, cause of mining shocks and conditions of gas outburst. The trigger action of gas fluid on mining shocks, especially the effect of the anomalous property of supercritical fluid on the preparation and occurrence of mining shocks is discussed. According to the similarity between mining-induced earthquakes and tectonic earthquakes in terms of mechanism, the significance of the above results in the study of physics of earthquake source is also discussed.展开更多
According to the feature that coal and gas outbursts is controlled by coal structure in Pingdingshan mine area, based on the study of the distribution law of disturbed coal in Mine Area and the macroscopic characteris...According to the feature that coal and gas outbursts is controlled by coal structure in Pingdingshan mine area, based on the study of the distribution law of disturbed coal in Mine Area and the macroscopic characteristics of coal structure, the characteristics and genesis to micro-pore of disturbed coal, the relationship between the type of coal structure and gas parameter, and the structural feature of coal at outbursts sites are mainly explored in this paper. Further, the steps and methods are put forward that coal structure indices applied to forecast coal and gas outbursts.展开更多
According to the characteristics of the methane hydrate condensing and accumulating methane, authors put forward a new technique thought way to prevent the accident of coal and gas outburst by urging the methane in th...According to the characteristics of the methane hydrate condensing and accumulating methane, authors put forward a new technique thought way to prevent the accident of coal and gas outburst by urging the methane in the coal seams to form hydrate. The paper analyzes the feasibility of forming the methane hydrate in the coal seam from the several sides, such as, temperature,pressure, and gas components, and the primary trial results indicate the problems should be settled before the industrialization appliance realized.展开更多
基金ACARP for financial support of project C26055the Australian underground coal mine operators that have supported this research project
文摘Outburst of coal and gas represents a significant risk to the health and safety of mine personnel working in development and longwall production face areas.There have been over 878 outburst events recorded in twenty-two Australian underground coal mines.Most outburst incidents have been associated with abnormal geological conditions.Details of Australian outburst incidents and mining experience in conditions where gas content was above current threshold levels are presented and discussed.Mining experience suggests that for gas con-tent below 9.0 m^3/t,mining in carbon dioxide(CO2)rich seam gas conditions does not pose a greater risk of outburst than mining in CH4 rich seam gas conditions.Mining experience also suggests that where no abnormal geological structures are present that mining in areas with gas content greater than the current accepted threshold levels can be undertaken with no discernible increase in outburst risk.The current approach to determining gas content threshold limits in Australian mines has been effective in prevent-ing injury from outburst,however operational experience suggests the current method is overly conser-vative and in some cases the threshold limits are low to the point that they provide no significant reduction in outburst risk.Other factors that affect outburst risk,such as gas pressure,coal toughness and stress and geological structures are presently not incorporated into outburst threshold limits adopted in Australian mines.These factors and the development of an outburst risk index applicable to Australian underground coal mining conditions are the subject of ongoing research.
基金financially supported by the State Key Research Development Program of China(No.2016YFC0600708)the Fundamental Research Funds for the Central Universities(No.2009kz03)+1 种基金the Scientific and Technological Innovation Leading Talents of“Ten thousand plan”of the Organization Department of the Central Committee of the CPC(No.W02020049)the International Clean Energy Talent Program of State Scholarship Fund of China Scholarship Council(No.201902720011)。
文摘Coal and gas outburst is a frequent dynamic disaster during underground coal mining activities.After about 150 years of exploration,the mechanisms of outbursts remain unclear to date.Studies on outburst mechanisms worldwide focused on the physicochemical and mechanical properties of outburst-prone coal,laboratory-scale outburst experiments and numerical modeling,mine-site investigations,and doctrines of outburst mechanisms.Outburst mechanisms are divided into two categories:single-factor and multi-factor mechanisms.The multi-factor mechanism is widely accepted,but all statistical phenomena during a single outburst cannot be explained using present knowledge.Additional topics about outburst mechanisms are proposed by summarizing the phenomena that need precise explanation.The most appealing research is the microscopic process of the interaction between coal and gas.Modern physical-chemical methods can help characterize the natural properties of outburst-prone coal.Outburst experiments can compensate for the deficiency of first-hand observation at the scene.Restoring the original outburst scene by constructing a geomechanical model or numerical model and reproducing the entire outburst process based on mining environment conditions,including stratigraphic distribution,gas occurrence,and geological structure,are important.Future studies can explore outburst mechanisms at the microscale.
基金the financial support from the National Natural Science Foundation of China (Grant No. 41731283)the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (CAS) (Grant No. QYZDB-SSW-DQC010)the Youth Innovation Promotion Association, Chinese Academy of Sciences (CAS)
文摘Accurate prediction of the hydrographs of outburst floods induced by landslide dam overtopping failure is necessary for hazard prevention and mitigation. In this study, flume model tests on the breaching of landslide dams were conducted. Unconsolidated soil materials with wide grain size distributions were used to construct the dam. The effects of different upstream inflow discharges and downstream bed soil erosion on the outburst peak discharge were investigated. Experimental results reveal that the whole hydrodynamic process of landslide dam breaching can be divided into three stages as defined by clear inflection points and peak discharges. The larger the inflow discharge, the shorter the time it takes to reach the peak discharge, and the larger the outburst flood peak discharge. The scale of the outburst floods was found to be amplified by the presence of an erodible bed located downstream of the landslide dam. This amplification decreases with the increase of upstream inflow. In addition, the results show that the existence of an erodible bed increases the density of the outburst flow, increasing its probability of transforming from a sediment flow to a debris flow.
基金ACARPthe Australian underground coal mine operators who have supported this research project
文摘Desorption rate index(DRI)was presented to the Australian underground coal industry in 1995 as a means for determining outburst threshold limits for Australian coal seams.DRI is a measure of the gas volume released from a coal sample in the first 30 s of crushing during the Q3 stage of gas content testing,multiplied by the ratio between measured Q3 and QM.Relationships were identified between QM and DRI for both CO2 and CH4 rich coal samples collected from the Bulli Seam at West Cliff Colliery and that identified relationship was referred to as the Bulli Seam Benchmark.The outburst mining gas content threshold limit values specified for the Bulli Seam at that time,when applied to the QM-DRI Bulli Seam benchmark,was shown to closely align with a DRI value of 900(DRI900),for both CO2 and CH4 rich seam gas conditions.The Australian coal industry adopted the DRI900 as the basis for determining outburst gas content TLV for Australian coal seams.Outburst mining experience in Australia has shown that gas content is not the only significant factor that impacts outburst risk,as all significant outburst events have been associated with abnormal geological conditions,such as faults and dykes.Therefore,assessing the potential application of additional outburst risk factors,to accurately define outburst risk zones,set safe mining threshold levels,and determine appropriate mining controls,warrants further investigation.Several Australian coal mines have implemented mining procedures enabling mining to continue in areas with gas content greater than the TLV determined using the DRI900 approach,without inducing an outburst.There is a broad lack of understanding among Australian coal mine operators as to the procedure and calculations used to determine DRI.Also,there has been growing concern regarding the accuracy and validity of the DRI900 method for determining outburst TLV.A comprehensive set of gas data has been collected from Australian coal seams,including the Bulli Seam,and this data has been used to investigate the DRI,Bulli Seam Benchmark,and the applicability of using DRI900 as the basis for assessing outburst risk and determining gas content TLV.The results are presented and discussed.
基金provided by the National Natural Science Foundation of China (Nos.50574072, 50874089 and 50534049)the Special Scientific Foundation of the Shaanxi Department of Education (No.08JK366) is gratefully acknowledged
文摘Based on the engineering observations of coal and gas outbursts during mining processes and the experimental results,we built a thin plate mechanical model for layered and spalled coal bodies.We studied the mechanical mechanism of outbursts,due to instability,of thin plates of coal rocks under the action of in-plane load and normal load,by using the catastrophe theory.The total potential function is derived for the layered rock system,the cusp catastrophe model for the system is established,the bifurcation set that makes the system unstable is given,the process in which gradual change of action forces leads to catastrophic change of state is analyzed,and the effect of movement path of point(P,q) in the control space on the stability of rock plate is analyzed.The study results show that during the process of coal mining,the stability of the layered coal bodies depends not only on its physical properties and dimensions but also on the magnitudes and changing paths of the in-plane load and the normal load.When the gas in the coal bodies ahead of the mining face is pre-drained,the gas pressure can be reduced and the normal load q can be lowered.Consequently,disasters such as coal and gas outbursts can be effectively prevented.
文摘The sudden and violent nature of coal and gas outbursts continues to pose a serious threat to coal mine safety in China. One of the key issues is to predict the occurrence of outbursts. Current methods that are used for predicting the outbursts in China are considered to be inadequate, inappropriate or impractical in some seam conditions. In recent years, Huainan Mining Industry Group(Huainan) in China and the Commonwealth Scientific and Industrial Research Organisation(CSIRO) in Australia have been jointly developing technology based on gas content in coal seams to predict the occurrence of outbursts in Huainan. Significant progresses in the technology development have been made, including the development of a more rapid and accurate system in determining gas content in coal seams, the invention of a sampling-while-drilling unit for fast and pointed coal sampling, and the coupling of DEM and LBM codes for advanced numerical simulation of outburst initiation and propagation. These advances are described in this paper.
基金The project supported by the National Natural Science Foundation of China
文摘This paper discribes a one-dimensional flow model to explain the basic mechanism of coal-gas outbursts.A break-start criterion of coal,as the elementary outburst criterion,is given approximately.In this ideal model,the tectonic pressure before excavation,as a load on coal body,affects the break-start and then the flow field.The flow field is decoupled with the stress field,so that the gas seepage through unbroken coal body,break-start and consequent two-phase flow,and pure gas flow can be analysed independently of the stress field. The tunnelling,an external disturbance that makes the seepage intensify relatively,is an essential factor for initiating outburst.Under steady tunnelling,seepage ought to tend to be steadily progressive.From its asymptotic solution initiation criterion is obtained.This is described by three conditions,possibility condi- tion—tectonic pressure condition,incubation condition—tunnelling or gas condition and triggering condi- tion—seepage velocity condition.
基金supported by the National Natural Science Foundation of China (Grant No.41201010)the Technology Project of the Ministry of Transport(Grant No.201231879210)+2 种基金the Directional Projectof IMHE (No.SDS-135-1202-02)Opening Fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Grant No.SKLGP2010K003)Open Research Fund of State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin,China Institute of Water Resources and Hydropower Research (Grant NO.IWHR-SKL-201209)
文摘With the global warming,the disasters of Glacier Lake Outburst Flood(GLOF) have taken place frequently in Tibet in recent years and attracted more and more attention.A systematic survey was conducted on the 19 GLOFs in Tibet to study their two main mechanisms.Investigations indicated that all the events occurred in end-moraine lakes,and the outburst occurred partially and instantly.And the breach had the shape of an arc or a trapezoid in overflow outburst and its top width was 3-5 times more than the height.The two main mechanisms of GLOFs in Tibetan end-moraine Lake were overflow and piping,and the overflow mechanism caused by iceberg collapse was dominated in most cases.A formula was proposed to calculate the critical thickness of iceberg tongue that determines the collapse.Granular analysis of the moraine materials revealed that seepage deformation is crucial in the outburst process.Finally,we conducted a case study of the Guangxiecuo Lake to show its possible process of outburst and estimated the peak discharge of the resulted flood.
基金Acknowledgements This work was financially supported by the National Key Research and Development Program (2016YFC0801402-4), the National Natural Science Foundation of China (51374236, 51574280), Chongqing Frontiers and Application- based Research Program (cstc2015jcyjBX0076). Meanwhile, the author would like to thank the reviewers of this paper for their constructive comments and suggestions to improve the publication.
文摘Coal and gas outburst is one of the main gas hazards in coal mines. However, due to the risks of the coal and gas outburst, the field test is difficult to complete. Therefore, an effective approach to studying the mechanism and development of outburst is to conduct the similar physical simulation. However, the similarity criteria and similar materials in outburst are the key factors which restrict the development of physical simulation. To solve those problems, this paper has established similarity criteria base on mechanics model, solid-fluid coupling model and energy model, and presented high similar materials. Combining with three groups of similar number, and considering similar mechanical parameters and deformation and failure regularity, the similarity criteria of outburst is determined on the basis of the energy model. According to those criteria, we put forward a similar material consists of pulverized coal, cement, sand, activated carbon, and water. The similar material has high compressive strength and the accordant characteristics with the raw coal, include density, porosity, adsorption, desorption. The new research is promising for preventing and controlling gas hazards in the future.
基金CSIRO Energy TechnologyChina Scholarship CouncilChina Fundamental Research Foundation for National University of China University of Geosciences (No.CUGL120258)
文摘Gas outbursts in underground mining occur under conditions of high gas desorption rate and gas content,combined with high stress regime, low coal strength and high Young's modulus. This combination of gas and stress factors occurs more often in deep mining. Hence, as the depth of mining increases, the potential for outburst increases. This study proposes a conceptual model to evaluate outburst potential in terms of an outburst indicator. The model was used to evaluate the potential for gas outburst in two mines, by comparing numerical simulations of gas flow behavior under typical stress regimes in an Australian gassy mine extracting a medium-volatile bituminous coal, and a Chinese gassy coal mine in Qinshui Basin(Shanxi province) extracting anthracite coal. We coupled the stress simulation program(FLAC3D) with the gas simulation program(SIMED II) to compute the stress and gas pressure and gas content distribution following development of a roadway into the targeted coal seams. The data from gas content and stress distribution were then used to quantify the intensity of energy release in the event of an outburst.
基金the financial support from the China Postdoctoral Science Foundation(Nos.2022M713384,and 2022M721450)the National Natural Science Foundation of China(Nos.52174187,51704164,and 52130409)the Technology Innovation Fund of China Coal Research Institute(No.2020CX-I-07).
文摘Coal and gas outbursts are dynamic disasters in which a large mass of gas and coal suddenly emerges in a mining space within a split second.The interaction between the gas pressure and stress environment is one of the key factors that induce coal and gas outbursts.In this study,first,the coupling relationship between the gas pressure in the coal body ahead of the working face and the dynamic load was investigated using experimental observations,numerical simulations,and mine-site investigations.It was observed that the impact rate of the dynamic load on the gas-bearing coal can significantly change the gas pressure.The faster the impact rate,the speedier the increase in gas pressure.Moreover,the gas pressure rise was faster closer to the impact interface.Subsequently,based on engineering background,we proposed three models of stress and gas pressure distribution in the coal body ahead of the working face:static load,stress disturbance,and dynamic load conditions.Finally,the gas pressure distribution and outburst mechanism were investigated.The high concentration of gas pressure appearing at the coal body ahead of the working face was caused by the dynamic load.The gas pressure first increased gradually to a peak value and then decreased with increasing distance from the working face.The increase in gas pressure plays a major role in outburst initiation by resulting in the ability to more easily reach the critical points needed for outburst initiation.Moreover,the stronger the dynamic load,the greater the outburst initiation risk.The results of this study provide practical guidance for the early warning and prevention of coal and gas outbursts.
基金the Ministry of Education and Science of Ukraine(No.0117U001129).
文摘A proposed concept of outburst initiation examines the release of a large amount of gas from coal seams resulted from disintegrating thermodynamically unstable coal organic matter(COM).A coal microstructure is assumed to getting unstable due to shear component appearance triggered by mining operations and tectonic activities considered as the primary factor while COM disintegration under the impact of weak electric fields can be defined as a secondary one.The energy of elastic deformations stored in the coal microstructure activates chemical reactions to tilt the energy balance in a“coal–gas”system.Based on this concept a mathematical model of a gas flow in the coal where porosity and permeability are changed due to chemical reactions has been developed.Using this model we calculated gas pressure changes in the pores initiated by gas release near the working face till satisfying force and energy criteria of outburst.The simulation results demonstrated forming overpressure zone in the area of intensive gas release with enhanced porosity and permeability.The calculated outburst parameters are well combined with those evaluated by field measurements.
基金funded by the National Natural Science Foundation of China(No.51674132)the State Key Research Development Program of China(No.2016YFC0801407-2)+2 种基金the Open Projects of State Key Laboratory for Geo Mechanics and Deep Underground Engineering of China(No.SKLGDUEK1510)the Open Projects of State Key Laboratory of Coal Resources and Safe Mining of China(No.SKLCRSM15KF04)the Research Fund of State and Local Joint Engineering Laboratory for Gas Drainage&Ground Control of Deep Mines(Henan Polytechnic University)(No.G201602)
文摘Coal and gas outburst is an extremely complex dynamic disaster in coal mine production process which will damage casualties and equipment facilities, and disorder the ventilation system by suddenly ejecting a great amount of coal and gas into roadway or working face. This paper analyzed the interaction among the three essential elements of coal and gas outburst dynamic system. A stress-seepage-damage coupling model was established which can be used to simulate the evolution of the dynamical system, and then the size scale of coal and gas outburst dynamical system was investigated. Results show that the dynam- ical system is consisted of three essential elements, coal-gas medium (material basis), geology dynamic environment (internal motivation) and mining disturbance (external motivation). On the case of CI 3 coal seam in Panyi Mine, the dynamical system exists in the range of 8-12 m in front of advancing face. The size scale will be larger where there are large geologic structures. This research plays an important guid- ing role for developing measures of coal and gas outburst prediction and prevention.
基金conducted as part of the DST, Govt. of India, New Delhi sponsored research project titled "Risk Assessment for Kedarnath Glacial Lake Outburst Floods" under the national project "Mapping Your Neighborhood in Uttarakhand (MANU)"the financial assistance received under the project to accomplish this research
文摘In this study, the Glacier Lake Outburst Flood(GLOF) that occurred over Kedarnath in June 2013 was modeled using integrated observations from the field and Remote Sensing(RS). The lake breach parameters such as area, depth, breach, and height have been estimated from the field observations and Remote Sensing(RS) data. A number of modelling approaches, including Snow Melt Runoff Model(SRM), Modified Single Flow model(MSF), Watershed Management System(WMS), Simplified Dam Breach Model(SMPDBK) and BREACH were used to model the GLOF. Estimations from SRM produced a runoff of about 22.7 m3 during 16–17, June 2013 over Chorabari Lake. Bathymetry data reported that the lake got filled to its maximum capacity(3822.7 m3) due to excess discharge. Hydrograph obtained from the BREACH model revealed a peak discharge of about 1699 m3/s during an intense water flow episode that lasted for 10–15 minutes on 17 th June 2013. Excess discharge from heavy rainfall and snowmelt into the lake increased its hydrostatic pressure and the lake breached cataclysmically.
基金financial support of the National Natural Science Foundation of China (No. 51474017)the Natural Science Foundation of Xinjiang Uygur Autonomous Region of China (No. 2014211B013)
文摘As coal and gas outburst is one of the most serious mine disasters, it is very important to at least control it if not prevent it from occurring. Injecting cement slurry or grouting into the coal seam can strengthen the seam, increase its rigidity coefficient(f), and reduce the volumetric expansion due to gas energy release.This paper reports the results of laboratory experiments on cement-based high water content slurry having different water-cement ratios(W/C) to be used for coal injection. The results show that as the W/C increases, the mobility of the slurry and its setting time increase. The compressive strength and rupture strength, however, are reduced. Furthermore, high W/C grout shows early strength after 7 days, which can be 80% of its 14-day compressive strength. To achieve rapid setting and early strength, the addition of Na_2SiO_3has proven to give the best result, when the concentration of the additive is 3%. The initial and final setting times are 13 and 21 min shorter than samples without Na_2SiO_3, while the compressive strength is more than double. As a retarder, the initial setting time can be extended to 83 min when tartaric acid of 0.4% concentration is added. Through the orthogonal experiment, the optimum recipe of the new high water content slurry has been determined to be: W/C = 2, tartaric acid = 0.2%, Na_2SiO_3= 3%, and12% bentonite. Reinforcement by injection simulation experiments show that the grouting radius of the new slurry mix is 250 mm when the applied grouting pressure is 60 k Pa, 7-day rupture strength and compressive strength are 5.2 and 6.4 MPa, respectively, and are 37% and 88% higher than ordinary cement grout. It can be concluded that the newly developed slurry mix is more effective than the ordinary mix for reinforcing coal and controlling gas outburst.
基金Projects 50574072, 50874089 and 50534049 supported by the National Natural Science Foundation of China08JK366 by the Special Scientific Foundation of Educational Committee of Shaanxi Province
文摘Based on catastrophe theory,we used the catastrophe progression method to predict the risk of coal and gas outbursts in coal mines.According to the major factors affecting coal and gas outbursts,we built a comprehensive evaluation index system and a coal and gas outburst prediction model.In addition,we performed a standard transformation for each index system;based on the degree the various indices affect the risk of an outburst,to make the data dimensionless.Based on the outburst data from eight mines,we determined catastrophe progression values and verified these values.The results show that:1) converting multi-dimensional problems into one-dimensional problems using this catastrophe progression method can simplify the steps of predicting coal and gas outbursts;2) when pre-determined catastrophe progression values are used to predict coal and gas outbursts,the predicting accuracy rate can be as high as 87.5%;3) the various coal mines have different factors inducing outbursts with varying importance of these factors and 4) the catastrophe progression values,calculated based on these factors,can be used effectively to predict the risk of outbursts in coal mines.
基金The authors are grateful for the support from the National Natural Science Foundation of China(Nos.52004008 and 52004005)Natural Science Foundation of Anhui Province of China(Nos.2008085QE260 and 2008085QE222)a Project is supported by Independent Research fund of The State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines(Anhui University of Science and Technology)(No.SKLMRDPC19ZZ07).
文摘This research reviewed the mechanics and gas desorption properties of intact coal,and tested the crushing work ratios of different intact coals,and then,studied the stress conditions for the failure or crushing of intact coal and the gas demand for the pulverization of intact coal particles.When a real-life outburst case is examined,the required minimum stress for intact coal outburst is estimated.The study concludes that the crushing work ratios of three intact coal samples vary from 294.3732 to 945.8048 J/m^(2).For the real-life case,more than 2300 MJ of transport work is needed,and 10062.09,7046.57 and 5895.47 m^(3) of gas is required when the gas pressure is 1,2 and 3 MPa,respectively.The crushing work exceeds the transport work and even reaches 13.96 times of the transport work.How to provide such an enormous crushing work is an energy-limiting factor for the outburst in intact coal.The strain energy is needed for the crushing work,and the required minimum stress is over 54.35 MPa,even reaching 300.44 MPa.These minimum stresses far exceed the in-situ vertical and horizontal stresses that can be provided at the 300–700 m mining depth range.
基金Social Public Welfare Foundation of Ministry of Science and Technology (2001DIB20107)National Natural Science Foundation of China (40474018).
文摘This paper presents an overview of mining seismicity, gas outburst and their origin. The internal relation of mining seismicity and gas outburst in the dynamic process is studied on the basis of the fact that these disasters sometimes occur simultaneously. The examples show a close relationship between mining seismicity and gas outburst in high gassy coal mines. It is proposed that strong mine shocks plus the response of low value and delay time are early warning signals. The mechanism of the relationship between mining seismicity and gas outburst is analyzed by using the location of mining shocks, focus mechanism, cause of mining shocks and conditions of gas outburst. The trigger action of gas fluid on mining shocks, especially the effect of the anomalous property of supercritical fluid on the preparation and occurrence of mining shocks is discussed. According to the similarity between mining-induced earthquakes and tectonic earthquakes in terms of mechanism, the significance of the above results in the study of physics of earthquake source is also discussed.
文摘According to the feature that coal and gas outbursts is controlled by coal structure in Pingdingshan mine area, based on the study of the distribution law of disturbed coal in Mine Area and the macroscopic characteristics of coal structure, the characteristics and genesis to micro-pore of disturbed coal, the relationship between the type of coal structure and gas parameter, and the structural feature of coal at outbursts sites are mainly explored in this paper. Further, the steps and methods are put forward that coal structure indices applied to forecast coal and gas outbursts.
文摘According to the characteristics of the methane hydrate condensing and accumulating methane, authors put forward a new technique thought way to prevent the accident of coal and gas outburst by urging the methane in the coal seams to form hydrate. The paper analyzes the feasibility of forming the methane hydrate in the coal seam from the several sides, such as, temperature,pressure, and gas components, and the primary trial results indicate the problems should be settled before the industrialization appliance realized.