期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Influence of Surrounding Structures upon the Aerodynamic and Acoustic Performance of the Outdoor Unit of a Split Air-Conditioner 被引量:3
1
作者 WU Chengjun LIU Jiang PAN Jie 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第4期836-845,共10页
DC-inverter split air-conditioner is widely used in Chinese homes as a result of its high-efficiency and energy-saving. Recently, the researches on its outdoor unit have focused on the influence of surrounding structu... DC-inverter split air-conditioner is widely used in Chinese homes as a result of its high-efficiency and energy-saving. Recently, the researches on its outdoor unit have focused on the influence of surrounding structures upon the aerodynamic and acoustic performance, however they are only limited to the influence of a few parameters on the performance, and practical design of the unit requires more detailed parametric analysis. Three-dimensional computational fluid dynamics(CFD) and computational aerodynamic acoustics(CAA) simulation based on FLUENT solver is used to study the influence of surrounding structures upon the aforementioned properties of the unit. The flow rate and sound pressure level are predicted for different rotating speed, and agree well with the experimental results. The parametric influence of three main surrounding structures(i.e. the heat sink, the bell-mouth type shroud and the outlet grille) upon the aerodynamic performance of the unit is analyzed thoroughly. The results demonstrate that the tip vortex plays a major role in the flow fields near the blade tip and has a great effect on the flow field of the unit. The inlet ring's size and throat's depth of the bell-mouth type shroud, and the through-flow area and configuration of upwind and downwind sections of the outlet grille are the most important factors that affect the aerodynamic performance of the unit. Furthermore, two improved schemes against the existing prototype of the unit are developed, which both can significantly increase the flow rate more than 6 %(i.e. 100 m3·h~(-1)) at given rotating speeds. The inevitable increase of flow noise level when flow rate is increased and the advantage of keeping a lower rotating speed are also discussed. The presented work could be a useful guideline in designing the aerodynamic and acoustic performance of the split air-conditioner in engineering practice. 展开更多
关键词 DC-inverter split air-conditioner outdoor unit surrounding structure computational fluid dynamics(CFD) computational aerodynamic acoustics(CAA) simulation improved design
下载PDF
基于正交试验的空调室外机顶板优化设计
2
作者 刘文钢 陈少华 +1 位作者 侯佳鑫 谢军龙 《风机技术》 2022年第6期28-32,共5页
In this paper,the modal analysis of an air conditioner outdoor unit is carried out and the simulation results are compared with the experimental results to verify its accuracy.Aseparate structural optimization analysi... In this paper,the modal analysis of an air conditioner outdoor unit is carried out and the simulation results are compared with the experimental results to verify its accuracy.Aseparate structural optimization analysis is performed for the top plate,and the compression bars of the top plate are changed from transverse to vertical placement.The simulation results show that the natural frequency and stiffness of the top plate are improved.Under the premise of vertical placement of the compression bars,a three-factor,three-level orthogonal test is conducted to find the optimal combination of low-order natural frequency and high-order natural frequency in the given range. 展开更多
关键词 Air Conditioner outdoor Unit Top Plate Structure Optimization Compression Bars OrthogonalTest
下载PDF
Vibrational characteristics of piping system in air conditioning outdoor unit 被引量:17
3
作者 S. K. LOH W. F. FARIS +1 位作者 M. HAMDI W. M. CHIN 《Science China(Technological Sciences)》 SCIE EI CAS 2011年第5期1154-1168,共15页
The modal analysis of piping system in air conditioner (AC) outdoor unit is essential to investigate the vibration properties of the system. In view of the growing significance of numerical finite element (FE) model f... The modal analysis of piping system in air conditioner (AC) outdoor unit is essential to investigate the vibration properties of the system. In view of the growing significance of numerical finite element (FE) model for vibration behaviour prediction, the AC piping elastic end support characterization has been explored. The axial and radial stiffness variables (ka, kr1, kr2) of the compressor-piping mounting are obtained and represented by dynamic stiffness of compressor grommet. They are obtained from dynamic load deflection test based on compressor operating condition such as excitation frequency and amplitude. The unknown stiffness variables of the other tube end (chassis-piping mounting) are determined by parameter fine tuning. An experimental modal analysis using impact hammer test has also been employed to determine the vibration properties such as natural frequencies, mode shapes and damping ratio of the piping structures. The modal parameters acquisition using SCADAS mobile acquisition system and LMS Impact Testing software is compared with the corresponding simulated modal properties using Abaqus. Most of the simulated natural frequencies achieve good correlation with the measured frequencies and it is reasonably a good prediction model to predict vibration behaviour of AC piping structures. 展开更多
关键词 air conditioning outdoor unit PIPING modal analysis vibration characteristics
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部