The mechanism of pre roll ploughing for 3D fins on the outside surface of copper tube was studied systematically, and especially the process and conditions of 3D fin formation were analyzed. The right mathematical mod...The mechanism of pre roll ploughing for 3D fins on the outside surface of copper tube was studied systematically, and especially the process and conditions of 3D fin formation were analyzed. The right mathematical model was also established. Based on the volume of fin ploughed out is equal to the volume of the metal extruded up by the extruding face of the tool, the relations between fin height, pre roll ploughing feed and pre roll ploughing depth have been achieved. With the increase of pre roll ploughing depth which must be equal to groove depth, the fin height gradually becomes larger. There are different critical feeds with the various depths of pre roll ploughing. The pre roll ploughing feed is the critical one, the height of fin is largest. And when the feed is above the critical one, the fin height will reduce with the increase of feed. The theoretical analysis basically accords with experimental results.展开更多
The macrostructure and properties of the thin walled copper tube prepared by the downward continuous unidirectional solidification (DCUS) method were studied. The result shows that the macrostructure is closely rela...The macrostructure and properties of the thin walled copper tube prepared by the downward continuous unidirectional solidification (DCUS) method were studied. The result shows that the macrostructure is closely related to the solid-liquid interface profile, which is influenced by the distance between the cooling water location and the solidification front. The mechanical properties of the thin walled copper tube prepared by the DCUS method are near those of the normal cast copper, and it has good relative density, electrical conductivity, and elongation, which are not greatly affected by casting speed. The thin walled copper tube prepared by the DCUS method also has good processing properties that can be taken to further drawing procedures directly without an intermediate process, and obtains good mechanical properties with the total processing rate of 89.8%.展开更多
The TP2 copper tube was prepared with La microalloying by horizontal continuous casting(HCC). The absorptivity of La and its effects on microstructure, tensile and corrosion properties of HCC TP2 copper tube were stud...The TP2 copper tube was prepared with La microalloying by horizontal continuous casting(HCC). The absorptivity of La and its effects on microstructure, tensile and corrosion properties of HCC TP2 copper tube were studied by means of the inductively coupled plasma optical emission spectrometer(ICP-OES), optical microscope(OM), scanning electron microscope(SEM) and potentiodynamic polarization measurements. The results show that the absorptivity of La in the HCC TP2 copper tube is about 15% under antivacuum conditions due to the good chemical activities of La. The impurity elements in copper tube such as O, S, Pb and Si can be significantly reduced, and the average columnar dendrite spacing of the copper tube can also be reduced from 2.21 mm to 0.93 mm by adding La. The ultimate tensile strength and the elongation with and without La addition are almost unchanged. However, the annual corrosion rate of the HCC TP2 copper tube is reduced from 10.18 mm·a^(-1) to 9.37 mm·a^(-1) by the purification effect of trace La.展开更多
Stresses and axial loads acting on the mandrel in the copper rifled tube drawing process were analysed,and factors affecting on the axial loads on mandrel were discussed.Results show that the depth of the mandrel drag...Stresses and axial loads acting on the mandrel in the copper rifled tube drawing process were analysed,and factors affecting on the axial loads on mandrel were discussed.Results show that the depth of the mandrel dragged into sizing zone and lubrication have major influence on drawing loads and fin shapes.展开更多
It is known that one of the causes of pitting corrosion of copper tubes is residual carbon on the inner surface. It was confirmed that type I” pitting corrosion of the copper tube is suppressed by keeping the residua...It is known that one of the causes of pitting corrosion of copper tubes is residual carbon on the inner surface. It was confirmed that type I” pitting corrosion of the copper tube is suppressed by keeping the residual carbon amount at 2 mg/m<sup>2</sup> or less, which is lower than that of the type I’ pitting corrosion, or by removing the fine particles that are the corrosion product of galvanized steel pipes. The developed water treatment chemical was evaluated using three types of copper tubes with residual carbon amounts of 0 mg/m<sup>2</sup>, 0.5 mg/m<sup>2</sup>, and 6.1 mg/m<sup>2</sup>. The evaluation was conducted for three months in an open-circulation cooling water system and compared with the current water treatment chemical. Under the current water treatment chemical conditions, only the copper tube with a residual carbon amount of 6.1 mg/m<sup>2</sup> showed a significant increase in the natural corrosion potential after two weeks, and pitting corrosion occurred. No pitting corrosion and no increase in the natural corrosion potential were observed in any of the copper tubes that were treated with the developed water treatment chemical. In addition, the polarization curve was measured using the cooling water from this field test, and the anodic polarization of two cooling waters was compared. For copper tubes with a large amount of residual carbon, the current density near 0 mV vs. Ag/AgCl electrode (SSE) increased when the developed water treatment chemical was added.展开更多
Using rolling-ploughing-extrusion compound processing methods,a 3D integral-fin structure on outside surface of red copper tube with diameter of 16.0 mm and wall thickness of 1.5 mm was obtained. When both rolling dep...Using rolling-ploughing-extrusion compound processing methods,a 3D integral-fin structure on outside surface of red copper tube with diameter of 16.0 mm and wall thickness of 1.5 mm was obtained. When both rolling depth and ploughing-extrusion(P-E) depth were 0.2 mm,rotating speed was 50 r/min,feed speed was 0.16 mm/r,3D fin structures with height of 0.25 mm were gotten. Two different fin structures were obtained in grooves formed with rolling-ploughing-extrusion compound forming technology and observed by scanning electron microscope(SEM). One is the compound structure with V-shaped groove and U-shaped groove,and the other is the single structure with V-shaped grooves. Two kinds of groove structures obtained by rolling processing and ploughing extrusion processing are restricted together by groove interval and rolling depth,and pitch and P-E depth,respectively. Based on the analysis of interaction of rolling and P-E processing,it is found from the result that the outside 3D integral-fin can be achieved by rolling-ploughing-extrusion compound processing when single V-shaped groove structures are formed by both rolling and P-E processing.展开更多
An unusual form of localized corrsion in copper tubes was detected early in service and in leakage tests after manufacturing.The morphology of this corrosion is similar to that of an ant's nest when viewed in cros...An unusual form of localized corrsion in copper tubes was detected early in service and in leakage tests after manufacturing.The morphology of this corrosion is similar to that of an ant's nest when viewed in cross section. The corrosion mechanisms, cases ofant's nest corrosion, and preventive measures are presented.展开更多
The evolution of microstructure,textures,and mechanical properties of thin-walled copper tube during heat treatment was investigated using EBSD technique and tensile test.The results show that the initial deformation ...The evolution of microstructure,textures,and mechanical properties of thin-walled copper tube during heat treatment was investigated using EBSD technique and tensile test.The results show that the initial deformation textures of pre-drawn thin-walled copper tube are mainly composed of Copper and Y components,while with the increase of temperatures,the textures are transformed into a strong Goss texture gradually.The high-resolution microstructural characterizations indicate that the new Goss recrystallized grains nucleate and grow up within the deformed Copper grains and Y grains in different mechanisms,respectively.The tensile strength of the thin-walled copper tube decreases gradually with the increase of the temperature,while the elongation increases first and then decreases sharply due to the action of grain sizes and texture components.展开更多
Ammonia corrosion in copper tube will affect the safety of boiler running in power plant. Therefore, no copper in heating system has become a technical orientation in heat exchanger reconstruction, This paper analy...Ammonia corrosion in copper tube will affect the safety of boiler running in power plant. Therefore, no copper in heating system has become a technical orientation in heat exchanger reconstruction, This paper analyzes the condition and mechanism of ammonia corrosion occurring in copper tube used in coal-fired power plants. Using a general steam condensation testing equipment only for horizontal single tube, with water vapor and water as working fluid, on two types of steel tube with 2-side enhancement heat transfer, namely, a spirally fluted tube and a ratchet tube with internal spiral groove (RISG tube) which was developed recently, a set of experimental tests are conducted to investigate the characteristics of heat transfer and hydromeehanics. In order to compare easily, both one copper smooth tube and one steel smooth tube are also used in the experiment. The experimental results, which get from single horizontal tube, show that the overall heat transfer coefficient of steel spirally fluted tube are improved by 10%o to 17%, and that of the steel RISG tube(22%-28%) is better than steel spirally fluted tube, its flow resistance coefficient is only increased by 22% to 66% when compared with smooth tube. Based on a lot of experimental data, the steel spirally fluted tube and the steel RISG tube were applied in a low pressure preheater and an oil-cooler of some or other power plant respectively. The field testing results showed that their heat transfer coefficient with each types of enhancement heat transfer tubes were improved by 2.5% and 21%-45% comparing with copper smooth tube heat exchangers. Both basic and field experiment indicates that the steel tube with 2-side enhancement heat transfer is an ideal choice for heat exchanger reconstruction in no copper issue in power plants.展开更多
It has been reported that pitting corrosion in copper tubes occurs due to the effect of a carbon film produced by the influence of undergoing an oil and heat treatment. As a quantitative method for determining the res...It has been reported that pitting corrosion in copper tubes occurs due to the effect of a carbon film produced by the influence of undergoing an oil and heat treatment. As a quantitative method for determining the residual carbon amount, it has been reported that the inner surface of a copper tube can be dissolved with a mixed acid to collect and analyze the adhering carbon;however, this method is dangerous and difficult. Therefore, two methods were examined as a simple quantitative method for obtaining the residual carbon amount using copper tubes with known residual carbon amounts. One method utilizes X-ray photoelectron spectroscopy (XPS), and the other method utilizes the potential difference between the carbon film-adhered surface and carbon film-removed surface. In regard to XPS measurement, a linear correlation was found between the spectral intensity of C and the residual carbon amount;therefore, XPS measurements were considered to be effective as a simple measurement method for the carbon film on the inner surface of a copper tube. In the evaluation method by measuring the corrosion potential, a correlation was observed between the potential difference ΔE and the residual carbon amount of the inner surface of the tube and the outer surface of the polished tube. It is considered possible to estimate the residual carbon amount from the prepared calibration curve. Through these studies, it is suggested that the carbon film was non-uniformly present on the surface of the copper tube. Therefore, the galvanic current was measured, and the effect of a non-uniform carbon film on corrosion behavior was investigated. As a result, in the measurement of galvanic current, the current flowed from the copper tube with a large amount of residual carbon (cathode) to the copper tube with a small amount of residual carbon (anode). In addition, the higher the area ratio of the carbon film was, the larger the galvanic current tended to be.展开更多
Monodispersed microsized copper oxalate particles were prepared in a segmented continuous flow tube reactor, and the effect of the main parameters such as organic additive agent, initial copper ions concentration, res...Monodispersed microsized copper oxalate particles were prepared in a segmented continuous flow tube reactor, and the effect of the main parameters such as organic additive agent, initial copper ions concentration, residence time, and segmented media on the final products were investigated experimentally. The obtained copper oxalate microsized particles were disc-like in the presence of citrate ligand,which was the shape inducer for the precipitated copper oxalate. Thermodynamic equilibrium diagrams of the Cu(Ⅱ)-oxalate-H_2O,Cu(Ⅱ)-oxalate-citrate-H_2O, and Cu(Ⅱ)-oxalate-EDTA-H_2O solution systems were drawn to estimate the possible copper species under the experimental conditions and to explain the formation mechanisms of copper oxalate particles in the segmented fluidic reactor. Both theoretical and experimental results indicated that the presence of chelating reagents such as citrate and EDTA had distinct effect on the evolution of particle shape. Air and kerosene were tested as media for the fluidic flow segmentation, and the latter was verified to better promote the growth of copper oxalate particles. The present study provides an easy method to prepare monodispersed copper oxalate microsized particles in a continuous scaling-up way, which can be utilized to prepare the precursor material for conductive inks.展开更多
Based on horizontal continuous casting with a heating-cooling combined mold (HCCM) technology, this article investigated the effects of processing parameters on the liquid-solid interface (LSI) position and the in...Based on horizontal continuous casting with a heating-cooling combined mold (HCCM) technology, this article investigated the effects of processing parameters on the liquid-solid interface (LSI) position and the influence of LSI position on the surface quality, microstructure, texture, and mechanical properties of a BFe10-1-1 tube (φ50 mm × 5 mm). HCCM efficiently improves the temperature gradient in front of the LSI. Through controlling the LSI position, the radial columnar-grained microstructure that is commonly generated by cooling mold casting can be eliminated, and the axial columnar-grained microstructure can be obtained. Under the condition of 1250℃ melting and holding temperature, 1200-1250℃ mold heating temperature, 50-80 mm/min mean drawing speed, and 500-700 L/h cooling water flow rate, the LSI position is located at the middle of the transition zone or near the entrance of the cooling section, and the as-cast tube not only has a strong axial columnar-grained microstructure ({hkl}〈621〉, {hkl}〈221〉) due to strong axial heating conduction during solidification but also has smooth internal and external surfaces without cracks, scratches, and other macroscopic defects due to short solidified shell length and short contact length between the tube and the mold at high temperature. The elongation and tensile strength of the tube are 46.0%-47.2% and 210-221 MPa, respectively, which can be directly used for the subsequent cold-large-strain processing.展开更多
The quality of micro heat pipe(MHP) is strongly affected by sealing technology. Based on the analysis of requirements of sealing technology, a cold welding technology was presented to seal MHP. In the cold welding pro...The quality of micro heat pipe(MHP) is strongly affected by sealing technology. Based on the analysis of requirements of sealing technology, a cold welding technology was presented to seal MHP. In the cold welding process, compression force was used to flatten micro groove copper(MGC) tube. Then the bonding of MGC tube was reached because of intensively plastic deformation of MGC tube under pressure. It is found that the plastic deformation area of the cold welding of MGC tube can be divided into three sections. The deformation of micro grooves in each section was investigated; the influence of the dimensions of cylindrical heads on the weld joint shape and strength was studied; and a comparison between smooth copper tube and MGC tube was done. The results show that a groove compression stage exists in the cold welding of MGC tube besides a flattened stage and a melting stage.展开更多
文摘The mechanism of pre roll ploughing for 3D fins on the outside surface of copper tube was studied systematically, and especially the process and conditions of 3D fin formation were analyzed. The right mathematical model was also established. Based on the volume of fin ploughed out is equal to the volume of the metal extruded up by the extruding face of the tool, the relations between fin height, pre roll ploughing feed and pre roll ploughing depth have been achieved. With the increase of pre roll ploughing depth which must be equal to groove depth, the fin height gradually becomes larger. There are different critical feeds with the various depths of pre roll ploughing. The pre roll ploughing feed is the critical one, the height of fin is largest. And when the feed is above the critical one, the fin height will reduce with the increase of feed. The theoretical analysis basically accords with experimental results.
文摘The macrostructure and properties of the thin walled copper tube prepared by the downward continuous unidirectional solidification (DCUS) method were studied. The result shows that the macrostructure is closely related to the solid-liquid interface profile, which is influenced by the distance between the cooling water location and the solidification front. The mechanical properties of the thin walled copper tube prepared by the DCUS method are near those of the normal cast copper, and it has good relative density, electrical conductivity, and elongation, which are not greatly affected by casting speed. The thin walled copper tube prepared by the DCUS method also has good processing properties that can be taken to further drawing procedures directly without an intermediate process, and obtains good mechanical properties with the total processing rate of 89.8%.
基金financially supported by the Plan of the Chinese Academy of Sciences(CAS)to Provide Science&Technology(S&T)Support and Service for National Strategic Emerging Industries(Grant No.:2012037)the Science Foundation of the Chinese Academy of Sciences(Grant No.:2012005)
文摘The TP2 copper tube was prepared with La microalloying by horizontal continuous casting(HCC). The absorptivity of La and its effects on microstructure, tensile and corrosion properties of HCC TP2 copper tube were studied by means of the inductively coupled plasma optical emission spectrometer(ICP-OES), optical microscope(OM), scanning electron microscope(SEM) and potentiodynamic polarization measurements. The results show that the absorptivity of La in the HCC TP2 copper tube is about 15% under antivacuum conditions due to the good chemical activities of La. The impurity elements in copper tube such as O, S, Pb and Si can be significantly reduced, and the average columnar dendrite spacing of the copper tube can also be reduced from 2.21 mm to 0.93 mm by adding La. The ultimate tensile strength and the elongation with and without La addition are almost unchanged. However, the annual corrosion rate of the HCC TP2 copper tube is reduced from 10.18 mm·a^(-1) to 9.37 mm·a^(-1) by the purification effect of trace La.
文摘Stresses and axial loads acting on the mandrel in the copper rifled tube drawing process were analysed,and factors affecting on the axial loads on mandrel were discussed.Results show that the depth of the mandrel dragged into sizing zone and lubrication have major influence on drawing loads and fin shapes.
文摘It is known that one of the causes of pitting corrosion of copper tubes is residual carbon on the inner surface. It was confirmed that type I” pitting corrosion of the copper tube is suppressed by keeping the residual carbon amount at 2 mg/m<sup>2</sup> or less, which is lower than that of the type I’ pitting corrosion, or by removing the fine particles that are the corrosion product of galvanized steel pipes. The developed water treatment chemical was evaluated using three types of copper tubes with residual carbon amounts of 0 mg/m<sup>2</sup>, 0.5 mg/m<sup>2</sup>, and 6.1 mg/m<sup>2</sup>. The evaluation was conducted for three months in an open-circulation cooling water system and compared with the current water treatment chemical. Under the current water treatment chemical conditions, only the copper tube with a residual carbon amount of 6.1 mg/m<sup>2</sup> showed a significant increase in the natural corrosion potential after two weeks, and pitting corrosion occurred. No pitting corrosion and no increase in the natural corrosion potential were observed in any of the copper tubes that were treated with the developed water treatment chemical. In addition, the polarization curve was measured using the cooling water from this field test, and the anodic polarization of two cooling waters was compared. For copper tubes with a large amount of residual carbon, the current density near 0 mV vs. Ag/AgCl electrode (SSE) increased when the developed water treatment chemical was added.
基金Projects(50436010, 50675070) supported by the National Natural Science Foundation of ChinaProject(07118064) supported by the Natural Science Foundation of Guangdong Province, China
文摘Using rolling-ploughing-extrusion compound processing methods,a 3D integral-fin structure on outside surface of red copper tube with diameter of 16.0 mm and wall thickness of 1.5 mm was obtained. When both rolling depth and ploughing-extrusion(P-E) depth were 0.2 mm,rotating speed was 50 r/min,feed speed was 0.16 mm/r,3D fin structures with height of 0.25 mm were gotten. Two different fin structures were obtained in grooves formed with rolling-ploughing-extrusion compound forming technology and observed by scanning electron microscope(SEM). One is the compound structure with V-shaped groove and U-shaped groove,and the other is the single structure with V-shaped grooves. Two kinds of groove structures obtained by rolling processing and ploughing extrusion processing are restricted together by groove interval and rolling depth,and pitch and P-E depth,respectively. Based on the analysis of interaction of rolling and P-E processing,it is found from the result that the outside 3D integral-fin can be achieved by rolling-ploughing-extrusion compound processing when single V-shaped groove structures are formed by both rolling and P-E processing.
文摘An unusual form of localized corrsion in copper tubes was detected early in service and in leakage tests after manufacturing.The morphology of this corrosion is similar to that of an ant's nest when viewed in cross section. The corrosion mechanisms, cases ofant's nest corrosion, and preventive measures are presented.
基金financially supported by the China Postdoctoral Science Foundation(No.2019M662276)the Chinese Academy of Science and Technology Service Network Planning(No.KFJ-STS-QYZD-145)。
文摘The evolution of microstructure,textures,and mechanical properties of thin-walled copper tube during heat treatment was investigated using EBSD technique and tensile test.The results show that the initial deformation textures of pre-drawn thin-walled copper tube are mainly composed of Copper and Y components,while with the increase of temperatures,the textures are transformed into a strong Goss texture gradually.The high-resolution microstructural characterizations indicate that the new Goss recrystallized grains nucleate and grow up within the deformed Copper grains and Y grains in different mechanisms,respectively.The tensile strength of the thin-walled copper tube decreases gradually with the increase of the temperature,while the elongation increases first and then decreases sharply due to the action of grain sizes and texture components.
文摘Ammonia corrosion in copper tube will affect the safety of boiler running in power plant. Therefore, no copper in heating system has become a technical orientation in heat exchanger reconstruction, This paper analyzes the condition and mechanism of ammonia corrosion occurring in copper tube used in coal-fired power plants. Using a general steam condensation testing equipment only for horizontal single tube, with water vapor and water as working fluid, on two types of steel tube with 2-side enhancement heat transfer, namely, a spirally fluted tube and a ratchet tube with internal spiral groove (RISG tube) which was developed recently, a set of experimental tests are conducted to investigate the characteristics of heat transfer and hydromeehanics. In order to compare easily, both one copper smooth tube and one steel smooth tube are also used in the experiment. The experimental results, which get from single horizontal tube, show that the overall heat transfer coefficient of steel spirally fluted tube are improved by 10%o to 17%, and that of the steel RISG tube(22%-28%) is better than steel spirally fluted tube, its flow resistance coefficient is only increased by 22% to 66% when compared with smooth tube. Based on a lot of experimental data, the steel spirally fluted tube and the steel RISG tube were applied in a low pressure preheater and an oil-cooler of some or other power plant respectively. The field testing results showed that their heat transfer coefficient with each types of enhancement heat transfer tubes were improved by 2.5% and 21%-45% comparing with copper smooth tube heat exchangers. Both basic and field experiment indicates that the steel tube with 2-side enhancement heat transfer is an ideal choice for heat exchanger reconstruction in no copper issue in power plants.
文摘It has been reported that pitting corrosion in copper tubes occurs due to the effect of a carbon film produced by the influence of undergoing an oil and heat treatment. As a quantitative method for determining the residual carbon amount, it has been reported that the inner surface of a copper tube can be dissolved with a mixed acid to collect and analyze the adhering carbon;however, this method is dangerous and difficult. Therefore, two methods were examined as a simple quantitative method for obtaining the residual carbon amount using copper tubes with known residual carbon amounts. One method utilizes X-ray photoelectron spectroscopy (XPS), and the other method utilizes the potential difference between the carbon film-adhered surface and carbon film-removed surface. In regard to XPS measurement, a linear correlation was found between the spectral intensity of C and the residual carbon amount;therefore, XPS measurements were considered to be effective as a simple measurement method for the carbon film on the inner surface of a copper tube. In the evaluation method by measuring the corrosion potential, a correlation was observed between the potential difference ΔE and the residual carbon amount of the inner surface of the tube and the outer surface of the polished tube. It is considered possible to estimate the residual carbon amount from the prepared calibration curve. Through these studies, it is suggested that the carbon film was non-uniformly present on the surface of the copper tube. Therefore, the galvanic current was measured, and the effect of a non-uniform carbon film on corrosion behavior was investigated. As a result, in the measurement of galvanic current, the current flowed from the copper tube with a large amount of residual carbon (cathode) to the copper tube with a small amount of residual carbon (anode). In addition, the higher the area ratio of the carbon film was, the larger the galvanic current tended to be.
文摘Monodispersed microsized copper oxalate particles were prepared in a segmented continuous flow tube reactor, and the effect of the main parameters such as organic additive agent, initial copper ions concentration, residence time, and segmented media on the final products were investigated experimentally. The obtained copper oxalate microsized particles were disc-like in the presence of citrate ligand,which was the shape inducer for the precipitated copper oxalate. Thermodynamic equilibrium diagrams of the Cu(Ⅱ)-oxalate-H_2O,Cu(Ⅱ)-oxalate-citrate-H_2O, and Cu(Ⅱ)-oxalate-EDTA-H_2O solution systems were drawn to estimate the possible copper species under the experimental conditions and to explain the formation mechanisms of copper oxalate particles in the segmented fluidic reactor. Both theoretical and experimental results indicated that the presence of chelating reagents such as citrate and EDTA had distinct effect on the evolution of particle shape. Air and kerosene were tested as media for the fluidic flow segmentation, and the latter was verified to better promote the growth of copper oxalate particles. The present study provides an easy method to prepare monodispersed copper oxalate microsized particles in a continuous scaling-up way, which can be utilized to prepare the precursor material for conductive inks.
基金financial support of National Key Technology R&D Program of China (No.2011BAE23B00)
文摘Based on horizontal continuous casting with a heating-cooling combined mold (HCCM) technology, this article investigated the effects of processing parameters on the liquid-solid interface (LSI) position and the influence of LSI position on the surface quality, microstructure, texture, and mechanical properties of a BFe10-1-1 tube (φ50 mm × 5 mm). HCCM efficiently improves the temperature gradient in front of the LSI. Through controlling the LSI position, the radial columnar-grained microstructure that is commonly generated by cooling mold casting can be eliminated, and the axial columnar-grained microstructure can be obtained. Under the condition of 1250℃ melting and holding temperature, 1200-1250℃ mold heating temperature, 50-80 mm/min mean drawing speed, and 500-700 L/h cooling water flow rate, the LSI position is located at the middle of the transition zone or near the entrance of the cooling section, and the as-cast tube not only has a strong axial columnar-grained microstructure ({hkl}〈621〉, {hkl}〈221〉) due to strong axial heating conduction during solidification but also has smooth internal and external surfaces without cracks, scratches, and other macroscopic defects due to short solidified shell length and short contact length between the tube and the mold at high temperature. The elongation and tensile strength of the tube are 46.0%-47.2% and 210-221 MPa, respectively, which can be directly used for the subsequent cold-large-strain processing.
基金Projects(50436010, 50705031) supported by the National Natural Science Foundation of ChinaProjects(07118064, 8151064101000058) supported by the Natural Science Foundation of Guangdong Province, China
文摘The quality of micro heat pipe(MHP) is strongly affected by sealing technology. Based on the analysis of requirements of sealing technology, a cold welding technology was presented to seal MHP. In the cold welding process, compression force was used to flatten micro groove copper(MGC) tube. Then the bonding of MGC tube was reached because of intensively plastic deformation of MGC tube under pressure. It is found that the plastic deformation area of the cold welding of MGC tube can be divided into three sections. The deformation of micro grooves in each section was investigated; the influence of the dimensions of cylindrical heads on the weld joint shape and strength was studied; and a comparison between smooth copper tube and MGC tube was done. The results show that a groove compression stage exists in the cold welding of MGC tube besides a flattened stage and a melting stage.