Logit regression analysis is widely applied in scientific studies and laboratory experiments, where skewed observations on a data set are often encountered. A number of problems with this method, for example, oudiers ...Logit regression analysis is widely applied in scientific studies and laboratory experiments, where skewed observations on a data set are often encountered. A number of problems with this method, for example, oudiers and influential observations, can cause overdispersion when a model is fitted. In this study a systematic statistical approach, including the plotting of several indices is used to diagnose the lack-of-fit of a logistic regression model. The outliers and influential observations on data from laboratory experiments are then detected. Specifically we take account of the interaction of an internal sohtary wave (ISW) with an obstacle, i.e., an underwater ridge, and also analyze the effects of the ridge height, the lower layer water depth, and the potential energy on the amplitude-based transmission rate of the ISW. As concluded, the goodness-of-fit of the revised logit regression model is better than that of the model without this approach.展开更多
发现在二幅图象之间的可靠的相应的点是在计算机视觉的一个基本问题,特别与 L 视觉框架的发展。这篇论文介绍歧管的通讯并且建议一个新奇计划由听说向上的看法拒绝孤立点歧管。建议计划独立于在出版工作要估计并且克服可得到的方法的...发现在二幅图象之间的可靠的相应的点是在计算机视觉的一个基本问题,特别与 L 视觉框架的发展。这篇论文介绍歧管的通讯并且建议一个新奇计划由听说向上的看法拒绝孤立点歧管。建议计划独立于在出版工作要估计并且克服可得到的方法的下列限制的参量的模型:效率严厉地因孤立点百分比的增加和估计的模型参数的数字倒下;孤立点拒绝被结合模型选择和模型评价。真实图象对的实验显示出我们的建议计划的优秀性能。展开更多
Hydrates always are considered as a threat to petroleum industry due to the operational problems it can cause.These problems could result in reducing production performance or even production stoppage for a long time....Hydrates always are considered as a threat to petroleum industry due to the operational problems it can cause.These problems could result in reducing production performance or even production stoppage for a long time.In this paper, we were intended to develop a LSSVM algorithm for prognosticating hydrate formation temperature(HFT) in a wide range of natural gas mixtures. A total number of 279 experimental data points were extracted from open literature to develop the LSSVM. The input parameters were chosen based on the hydrate structure that each gas species form. The modeling resulted in a robust algorithm with the squared correlation coefficients(R^2) of 0.9918. Aside from the excellent statistical parameters of the model, comparing proposed LSSVM with some of conventional correlations showed its supremacy, particularly in the case of sour gases with high H_2S concentrations, where the model surpasses all correlations and existing thermodynamic models. For detection of the probable doubtful experimental data, and applicability of the model, the Leverage statistical approach was performed on the data sets. This algorithm showed that the proposed LSSVM model is statistically valid for HFT prediction and almost all the data points are in the applicability domain of the model.展开更多
Detection of multiple outliers or subset of influential points has been rarely considered in the linear measurement error models. In this paper a new influence statistic for one or a set of observations is generalized...Detection of multiple outliers or subset of influential points has been rarely considered in the linear measurement error models. In this paper a new influence statistic for one or a set of observations is generalized and characterized based on the corrected likelihood in the linear measurement error models. This influence statistic can be expressed in terms of the residuals and the leverages of linear measurement error regression. Unlike Cook's statistic, this new measure of influence has asymptotically normal distribution and is able to detect a subset of high leverage outliers which is not identified by Cook's statistic. As an illustrative example, simulation studies and a real data set are analysed.展开更多
基金Science Council of Taiwan Province under Grant Nos.NSC 96-2628-E-366-004-MY2 and 96-2628-E-132-001-MY2
文摘Logit regression analysis is widely applied in scientific studies and laboratory experiments, where skewed observations on a data set are often encountered. A number of problems with this method, for example, oudiers and influential observations, can cause overdispersion when a model is fitted. In this study a systematic statistical approach, including the plotting of several indices is used to diagnose the lack-of-fit of a logistic regression model. The outliers and influential observations on data from laboratory experiments are then detected. Specifically we take account of the interaction of an internal sohtary wave (ISW) with an obstacle, i.e., an underwater ridge, and also analyze the effects of the ridge height, the lower layer water depth, and the potential energy on the amplitude-based transmission rate of the ISW. As concluded, the goodness-of-fit of the revised logit regression model is better than that of the model without this approach.
基金Supported by National Natural Science Foundation of China (60675020, 60773132), Natural Science Foundation of Shandong Province (Q2007G02), and Opening Task-fund for National Laboratory of Pattern Recognition
文摘发现在二幅图象之间的可靠的相应的点是在计算机视觉的一个基本问题,特别与 L 视觉框架的发展。这篇论文介绍歧管的通讯并且建议一个新奇计划由听说向上的看法拒绝孤立点歧管。建议计划独立于在出版工作要估计并且克服可得到的方法的下列限制的参量的模型:效率严厉地因孤立点百分比的增加和估计的模型参数的数字倒下;孤立点拒绝被结合模型选择和模型评价。真实图象对的实验显示出我们的建议计划的优秀性能。
文摘Hydrates always are considered as a threat to petroleum industry due to the operational problems it can cause.These problems could result in reducing production performance or even production stoppage for a long time.In this paper, we were intended to develop a LSSVM algorithm for prognosticating hydrate formation temperature(HFT) in a wide range of natural gas mixtures. A total number of 279 experimental data points were extracted from open literature to develop the LSSVM. The input parameters were chosen based on the hydrate structure that each gas species form. The modeling resulted in a robust algorithm with the squared correlation coefficients(R^2) of 0.9918. Aside from the excellent statistical parameters of the model, comparing proposed LSSVM with some of conventional correlations showed its supremacy, particularly in the case of sour gases with high H_2S concentrations, where the model surpasses all correlations and existing thermodynamic models. For detection of the probable doubtful experimental data, and applicability of the model, the Leverage statistical approach was performed on the data sets. This algorithm showed that the proposed LSSVM model is statistically valid for HFT prediction and almost all the data points are in the applicability domain of the model.
文摘Detection of multiple outliers or subset of influential points has been rarely considered in the linear measurement error models. In this paper a new influence statistic for one or a set of observations is generalized and characterized based on the corrected likelihood in the linear measurement error models. This influence statistic can be expressed in terms of the residuals and the leverages of linear measurement error regression. Unlike Cook's statistic, this new measure of influence has asymptotically normal distribution and is able to detect a subset of high leverage outliers which is not identified by Cook's statistic. As an illustrative example, simulation studies and a real data set are analysed.