To decrease the complexity of MAP algorithm, reduced state or reduced search techniques can be applied. In this paper we propose a reduced search soft output detection algorithm fully based on the principle of M a...To decrease the complexity of MAP algorithm, reduced state or reduced search techniques can be applied. In this paper we propose a reduced search soft output detection algorithm fully based on the principle of M algorithm for turbo equalization, which is a suboptimum version of the Lee algorithm. This algorithm is called soft output M algorithm (denoted as SO M algorithm), which applies the M strategy to both the forward recursion and the extended forward recursion of the Lee algorithm. Computer simulation results show that, by properly selecting and adjusting the breadth parameter and depth parameter during the iteration of turbo equalization, this algorithm can obtain good performance and complexity trade off.展开更多
In order to fully utilize the soft decision ability of the outer decoder in a concatenated system, reliability information (called soft output) from the inner decoder or equalizer is required. In this paper, based on...In order to fully utilize the soft decision ability of the outer decoder in a concatenated system, reliability information (called soft output) from the inner decoder or equalizer is required. In this paper, based on the analysis of typical implementations of soft output VA, a novel algorithm is proposed by utilizing the property of Viterbi algorithm. Compared with the typical implementations, less processing expense is required by the new algorithm for weighting the hard decisions of VA. Meanwhile, simulation results show that, deterioration in performance of this algorithm is usually small for decoding of convolutional code and negligible for equalization.展开更多
A computationally efficient soft-output detector with lattice-reduction (LR) for the multiple-input multiple-output (MIMO) systems is proposed. In the proposed scheme, the sorted QR de- composition is applied on t...A computationally efficient soft-output detector with lattice-reduction (LR) for the multiple-input multiple-output (MIMO) systems is proposed. In the proposed scheme, the sorted QR de- composition is applied on the lattice-reduced equivalent channel to obtain the tree structure. With the aid of the boundary control, the stack algorithm searches a small part of the whole search tree to generate a handful of candidate lists in the reduced lattice. The proposed soft-output algorithm achieves near-optimal perfor- mance in a coded MIMO system and the associated computational complexity is substantially lower than that of previously proposed methods.展开更多
This paper discusses the problem of direction of departure (DOD) and direction of arrival (DOA) estimation for a bistatic multiple input multiple output (MIMO) radar, and proposes an improved reduced-dimension C...This paper discusses the problem of direction of departure (DOD) and direction of arrival (DOA) estimation for a bistatic multiple input multiple output (MIMO) radar, and proposes an improved reduced-dimension Capon algorithm therein. Compared with the reduced-dimension Capon algorithm which requires pair matching between the two-dimensional angle estimation, the pro- posed algorithm can obtain automatically paired DOD and DOA estimation without debasing the performance of angle estimation in bistatic MIMO radar. Furthermore, the proposed algorithm has a lower complexity than the reduced-dimension Capon algorithm, and it is suitable for non-uniform linear arrays. The complexity of the proposed algorithm is analyzed and the Cramer-Rao bound (CRB) is also derived. Simulation results verify the usefulness of the proposed algorithm.展开更多
In ATM networks, bursty sources can be described as the Interrupted Bernoulli Process(IBP). With the use of the thin process theory, the Probability Generating Function(PGF) of the IBP is obtained. An iterative algori...In ATM networks, bursty sources can be described as the Interrupted Bernoulli Process(IBP). With the use of the thin process theory, the Probability Generating Function(PGF) of the IBP is obtained. An iterative algorithm, which can be used to calculate the IBP probability distribution, is presented. The bursty source’s equivalent description is discussed. It is proposed that the leaky bucket output process can be approximately described as the IBP. The accuracy of the analytical results has been largely validated by means of the simulation approach. Moreover, how to improve its accuracy is discussed. The smoothing function of the leaky bucket algorithm is quantitatively analyzed.展开更多
受限于自然条件,光伏出力具有很强的随机性。为准确评估轨道交通基础设施分布式光伏发电的光伏出力特性,提出一种基于改进K-means聚类算法的轨道交通基础设施分布式光伏发电典型场景生成方法,并基于此进行光伏出力特性分析。首先,基于...受限于自然条件,光伏出力具有很强的随机性。为准确评估轨道交通基础设施分布式光伏发电的光伏出力特性,提出一种基于改进K-means聚类算法的轨道交通基础设施分布式光伏发电典型场景生成方法,并基于此进行光伏出力特性分析。首先,基于分布式光伏发电设施以及气象数据,利用PVsyst软件模拟光伏发电出力数据。然后,针对基本K-means聚类算法聚类参数和初始聚类中心盲目性高的问题,结合聚类有效性指标(Density based index,DBI)和层次聚类对其进行改进并利用改进K-means聚类算法生成光伏典型日出力场景。最后,基于华中地区某地轨道交通基础设施分布式光伏系统对所提方法的有效性和优越性进行验证,并通过定性和定量分析各典型场景的出力特性揭示轨道交通基础设施分布式光伏出力的规律和特点。展开更多
Input-output data fitting methods are often used for unknown-structure nonlinear system modeling. Based on model-on-demand tactics, a multiple model approach to modeling for nonlinear systems is presented. The basic i...Input-output data fitting methods are often used for unknown-structure nonlinear system modeling. Based on model-on-demand tactics, a multiple model approach to modeling for nonlinear systems is presented. The basic idea is to find out, from vast historical system input-output data sets, some data sets matching with the current working point, then to develop a local model using Local Polynomial Fitting (LPF) algorithm. With the change of working points, multiple local models are built, which realize the exact modeling for the global system. By comparing to other methods, the simulation results show good performance for its simple, effective and reliable estimation.展开更多
The increase in the number of devices with a massive revolution in mobile technology leads to increase the capacity of the wireless communications net-works. Multi-user Multiple-Input Multiple-Output is an advanced pr...The increase in the number of devices with a massive revolution in mobile technology leads to increase the capacity of the wireless communications net-works. Multi-user Multiple-Input Multiple-Output is an advanced procedure of Multiple-Input Multiple-Output, which improves the performance of Wireless Local Area Networks. Moreover, Multi-user Multiple-Input Multiple-Output leads the Wireless Local Area Networks toward covering more areas. Due to the growth of the number of clients and requirements, researchers try to improve the performance of the Medium Access Control protocol of Multi-user Multiple-Input Multiple-Output technology to serve the user better, by supporting different data sizes, and reducing the waiting time to be able to transmit data quickly. In this paper, we propose a Clustering Multi-user Multiple-Input Multiple-Output protocol, which is an improved Medium Access Control protocol for Multi-user Multiple-Input Multiple-Out-put based on MIMOMate clustering technique and Padovan Backoff Algorithm. Utilizing MIMOMMate focuses on the signal power which only serves the user in that cluster, minimizes the energy consumption and increases the capacity. The implementation of Clustering Multi-user Multiple-Input Multiple-Output performs on the Network Simulator (NS2.34) platform. The results show that Clustering Multi-user Multiple-Input Multiple-Output protocol improves the throughput by 89.8%, and reduces the latency of wireless communication by 43.9% in scenarios with contention. As a result, the overall performances of the network are improved.展开更多
Minimum Partial Euclidean Distance (MPED) based K-best algorithm is proposed to detect the best signal for MIMO (Multiple Input Multiple Output) detector. It is based on Breadth-first search method. The proposed algor...Minimum Partial Euclidean Distance (MPED) based K-best algorithm is proposed to detect the best signal for MIMO (Multiple Input Multiple Output) detector. It is based on Breadth-first search method. The proposed algorithm is independent of the number of transmitting/receiving antennas and constellation size. It provides a high throughput and reduced Bit Error Rate (BER) with the performance close to Maximum Likelihood Detection (MLD) method. The main innovations are the nodes that are expanded and visited based on MPED algorithm and it keeps track of finally selecting the best candidates at each cycle. It allows its complexity to scale linearly with the modulation order. Using Quadrature Amplitude Modulation (QAM) the complex domain input signals are modulated and are converted into wavelet packets and these packets are transmitted using Additive White Gaussian Noise (AWGN) channel. Then from the number of received signals the best signal is detected using MPED based K-best algorithm. It provides the exact best node solution with reduced complexity. The pipelined VLSI architecture is the best suited for implementation because the expansion and sorting cores are data driven. The proposed method is implemented targeting Xilinx Virtex 5 device for a 4 × 4, 64-QAM system and it achieves throughput of 1.1 Gbps. The results of resource utilization are tabulated and compared with the existing algorithms.展开更多
This paper considers the H-infinity dynamic output feedback control for descriptor systems with delay in states. The controller is a descriptor system without delay. Several equivalent sufficient conditions for the ex...This paper considers the H-infinity dynamic output feedback control for descriptor systems with delay in states. The controller is a descriptor system without delay. Several equivalent sufficient conditions for the existence of one descriptor dynamic controller without impulsive models are given. Furthermore the explicit expression of the desired controller is obtained. The detailed design of the controller is presented using the cone complementarity linearization iterative algorithm and the LMI method. A ntumerical example is shown to illustrate the designed method.展开更多
为实现风电出力时间序列的高性能模拟,文中提出了一种基于SAGA-KM(simulated annealing and genetic algorithms-K-means)算法实现典型风电场景分类和基于Copula函数进行风电日过程马尔可夫过程建模的风电模拟方法。SAGA-KM算法将传统K...为实现风电出力时间序列的高性能模拟,文中提出了一种基于SAGA-KM(simulated annealing and genetic algorithms-K-means)算法实现典型风电场景分类和基于Copula函数进行风电日过程马尔可夫过程建模的风电模拟方法。SAGA-KM算法将传统KM算法与遗传算法和退火算法相结合,能显著提高风电场景分类效果;基于Copula函数建立的马尔可夫链精细概率模型,以去粗粒化方式实现马尔可夫过程蒙特卡洛模拟,克服了粗粒化引起的概率分布偏差。针对甘肃省某风电场数据进行实际模拟,结果表明文中方法生成模拟序列的统计分布特性、自相关函数特性和日均功率的分布特性与实测数据都非常接近,该方法能很好地保留风电序列的概率分布特性和随时间变化的波动特性,具有重要的工程实用价值。展开更多
The matrix inversion operation is needed in the MMSE decoding algorithm of orthogonal space-time block coding (OSTBC) proposed by Papadias and Foschini. In this paper, an minimum mean square error (MMSE) decoding ...The matrix inversion operation is needed in the MMSE decoding algorithm of orthogonal space-time block coding (OSTBC) proposed by Papadias and Foschini. In this paper, an minimum mean square error (MMSE) decoding algorithm without matrix inversion is proposed, by which the computational complexity can be reduced directly but the decoding performance is not affected.展开更多
文摘To decrease the complexity of MAP algorithm, reduced state or reduced search techniques can be applied. In this paper we propose a reduced search soft output detection algorithm fully based on the principle of M algorithm for turbo equalization, which is a suboptimum version of the Lee algorithm. This algorithm is called soft output M algorithm (denoted as SO M algorithm), which applies the M strategy to both the forward recursion and the extended forward recursion of the Lee algorithm. Computer simulation results show that, by properly selecting and adjusting the breadth parameter and depth parameter during the iteration of turbo equalization, this algorithm can obtain good performance and complexity trade off.
文摘In order to fully utilize the soft decision ability of the outer decoder in a concatenated system, reliability information (called soft output) from the inner decoder or equalizer is required. In this paper, based on the analysis of typical implementations of soft output VA, a novel algorithm is proposed by utilizing the property of Viterbi algorithm. Compared with the typical implementations, less processing expense is required by the new algorithm for weighting the hard decisions of VA. Meanwhile, simulation results show that, deterioration in performance of this algorithm is usually small for decoding of convolutional code and negligible for equalization.
文摘A computationally efficient soft-output detector with lattice-reduction (LR) for the multiple-input multiple-output (MIMO) systems is proposed. In the proposed scheme, the sorted QR de- composition is applied on the lattice-reduced equivalent channel to obtain the tree structure. With the aid of the boundary control, the stack algorithm searches a small part of the whole search tree to generate a handful of candidate lists in the reduced lattice. The proposed soft-output algorithm achieves near-optimal perfor- mance in a coded MIMO system and the associated computational complexity is substantially lower than that of previously proposed methods.
基金supported by the National Natural Science Foundation of China(6080105261271327)+2 种基金Jiangsu Planned Projects for Postdoctoral Research Funds(1201039C)the China Postdoctoral Science Foundation (2012M521099)Hubei Key Laboratory of Intelligent Wireless Communications(IWC2012002)
文摘This paper discusses the problem of direction of departure (DOD) and direction of arrival (DOA) estimation for a bistatic multiple input multiple output (MIMO) radar, and proposes an improved reduced-dimension Capon algorithm therein. Compared with the reduced-dimension Capon algorithm which requires pair matching between the two-dimensional angle estimation, the pro- posed algorithm can obtain automatically paired DOD and DOA estimation without debasing the performance of angle estimation in bistatic MIMO radar. Furthermore, the proposed algorithm has a lower complexity than the reduced-dimension Capon algorithm, and it is suitable for non-uniform linear arrays. The complexity of the proposed algorithm is analyzed and the Cramer-Rao bound (CRB) is also derived. Simulation results verify the usefulness of the proposed algorithm.
文摘In ATM networks, bursty sources can be described as the Interrupted Bernoulli Process(IBP). With the use of the thin process theory, the Probability Generating Function(PGF) of the IBP is obtained. An iterative algorithm, which can be used to calculate the IBP probability distribution, is presented. The bursty source’s equivalent description is discussed. It is proposed that the leaky bucket output process can be approximately described as the IBP. The accuracy of the analytical results has been largely validated by means of the simulation approach. Moreover, how to improve its accuracy is discussed. The smoothing function of the leaky bucket algorithm is quantitatively analyzed.
文摘受限于自然条件,光伏出力具有很强的随机性。为准确评估轨道交通基础设施分布式光伏发电的光伏出力特性,提出一种基于改进K-means聚类算法的轨道交通基础设施分布式光伏发电典型场景生成方法,并基于此进行光伏出力特性分析。首先,基于分布式光伏发电设施以及气象数据,利用PVsyst软件模拟光伏发电出力数据。然后,针对基本K-means聚类算法聚类参数和初始聚类中心盲目性高的问题,结合聚类有效性指标(Density based index,DBI)和层次聚类对其进行改进并利用改进K-means聚类算法生成光伏典型日出力场景。最后,基于华中地区某地轨道交通基础设施分布式光伏系统对所提方法的有效性和优越性进行验证,并通过定性和定量分析各典型场景的出力特性揭示轨道交通基础设施分布式光伏出力的规律和特点。
基金This project was supported by National Natural Science Foundation (No. 69934020).
文摘Input-output data fitting methods are often used for unknown-structure nonlinear system modeling. Based on model-on-demand tactics, a multiple model approach to modeling for nonlinear systems is presented. The basic idea is to find out, from vast historical system input-output data sets, some data sets matching with the current working point, then to develop a local model using Local Polynomial Fitting (LPF) algorithm. With the change of working points, multiple local models are built, which realize the exact modeling for the global system. By comparing to other methods, the simulation results show good performance for its simple, effective and reliable estimation.
文摘The increase in the number of devices with a massive revolution in mobile technology leads to increase the capacity of the wireless communications net-works. Multi-user Multiple-Input Multiple-Output is an advanced procedure of Multiple-Input Multiple-Output, which improves the performance of Wireless Local Area Networks. Moreover, Multi-user Multiple-Input Multiple-Output leads the Wireless Local Area Networks toward covering more areas. Due to the growth of the number of clients and requirements, researchers try to improve the performance of the Medium Access Control protocol of Multi-user Multiple-Input Multiple-Output technology to serve the user better, by supporting different data sizes, and reducing the waiting time to be able to transmit data quickly. In this paper, we propose a Clustering Multi-user Multiple-Input Multiple-Output protocol, which is an improved Medium Access Control protocol for Multi-user Multiple-Input Multiple-Out-put based on MIMOMate clustering technique and Padovan Backoff Algorithm. Utilizing MIMOMMate focuses on the signal power which only serves the user in that cluster, minimizes the energy consumption and increases the capacity. The implementation of Clustering Multi-user Multiple-Input Multiple-Output performs on the Network Simulator (NS2.34) platform. The results show that Clustering Multi-user Multiple-Input Multiple-Output protocol improves the throughput by 89.8%, and reduces the latency of wireless communication by 43.9% in scenarios with contention. As a result, the overall performances of the network are improved.
文摘Minimum Partial Euclidean Distance (MPED) based K-best algorithm is proposed to detect the best signal for MIMO (Multiple Input Multiple Output) detector. It is based on Breadth-first search method. The proposed algorithm is independent of the number of transmitting/receiving antennas and constellation size. It provides a high throughput and reduced Bit Error Rate (BER) with the performance close to Maximum Likelihood Detection (MLD) method. The main innovations are the nodes that are expanded and visited based on MPED algorithm and it keeps track of finally selecting the best candidates at each cycle. It allows its complexity to scale linearly with the modulation order. Using Quadrature Amplitude Modulation (QAM) the complex domain input signals are modulated and are converted into wavelet packets and these packets are transmitted using Additive White Gaussian Noise (AWGN) channel. Then from the number of received signals the best signal is detected using MPED based K-best algorithm. It provides the exact best node solution with reduced complexity. The pipelined VLSI architecture is the best suited for implementation because the expansion and sorting cores are data driven. The proposed method is implemented targeting Xilinx Virtex 5 device for a 4 × 4, 64-QAM system and it achieves throughput of 1.1 Gbps. The results of resource utilization are tabulated and compared with the existing algorithms.
文摘This paper considers the H-infinity dynamic output feedback control for descriptor systems with delay in states. The controller is a descriptor system without delay. Several equivalent sufficient conditions for the existence of one descriptor dynamic controller without impulsive models are given. Furthermore the explicit expression of the desired controller is obtained. The detailed design of the controller is presented using the cone complementarity linearization iterative algorithm and the LMI method. A ntumerical example is shown to illustrate the designed method.
文摘为实现风电出力时间序列的高性能模拟,文中提出了一种基于SAGA-KM(simulated annealing and genetic algorithms-K-means)算法实现典型风电场景分类和基于Copula函数进行风电日过程马尔可夫过程建模的风电模拟方法。SAGA-KM算法将传统KM算法与遗传算法和退火算法相结合,能显著提高风电场景分类效果;基于Copula函数建立的马尔可夫链精细概率模型,以去粗粒化方式实现马尔可夫过程蒙特卡洛模拟,克服了粗粒化引起的概率分布偏差。针对甘肃省某风电场数据进行实际模拟,结果表明文中方法生成模拟序列的统计分布特性、自相关函数特性和日均功率的分布特性与实测数据都非常接近,该方法能很好地保留风电序列的概率分布特性和随时间变化的波动特性,具有重要的工程实用价值。
文摘The matrix inversion operation is needed in the MMSE decoding algorithm of orthogonal space-time block coding (OSTBC) proposed by Papadias and Foschini. In this paper, an minimum mean square error (MMSE) decoding algorithm without matrix inversion is proposed, by which the computational complexity can be reduced directly but the decoding performance is not affected.