On the basis of comparative analysis on the vegetable input-output efficiency of suburban and rural areas in 2011- 2012,this paper made co-integration test,impulse response and variance decomposition for the vegetable...On the basis of comparative analysis on the vegetable input-output efficiency of suburban and rural areas in 2011- 2012,this paper made co-integration test,impulse response and variance decomposition for the vegetable input-output relationship of suburban areas in 1998-2012. Comparative analysis indicated that the vegetable input-output benefit of suburban area declines,while that of rural area rises; empirical analysis indicated that there is a long-term stable relationship between labor cost of vegetable planting and vegetable income and between material cost of vegetable planting and vegetable income,but the vegetable income itself has certain lag effect,followed by material cost,and the labor cost has minimum influence. Finally,it came up with recommendations for improving suburban vegetable input-output relationship,including improving vegetable input security mechanism,improving farmers' quality and innovation ability,and increasing technological input.展开更多
The paper proposes a novel H∞ load frequency control(LFC) design method for multi-area power systems based on an integral-based non-fragile distributed fixed-order dynamic output feedback(DOF) tracking-regulator cont...The paper proposes a novel H∞ load frequency control(LFC) design method for multi-area power systems based on an integral-based non-fragile distributed fixed-order dynamic output feedback(DOF) tracking-regulator control scheme. To this end, we consider a nonlinear interconnected model for multiarea power systems which also include uncertainties and timevarying communication delays. The design procedure is formulated using semi-definite programming and linear matrix inequality(LMI) method. The solution of the proposed LMIs returns necessary parameters for the tracking controllers such that the impact of model uncertainty and load disturbances are minimized. The proposed controllers are capable of receiving all or part of subsystems information, whereas the outputs of each controller are local. These controllers are designed such that the resilient stability of the overall closed-loop system is guaranteed. Simulation results are provided to verify the effectiveness of the proposed scheme. Simulation results quantify that the distributed(and decentralized) controlled system behaves well in presence of large parameter perturbations and random disturbances on the power system.展开更多
Inter-area low frequency oscillation in power system is one of the major problems for bulk power transmission through weak tie lines.Use of wide-area signal is more effective than the local area signal in damping out ...Inter-area low frequency oscillation in power system is one of the major problems for bulk power transmission through weak tie lines.Use of wide-area signal is more effective than the local area signal in damping out the inter-area oscillations.Wide area measurement system(WAMS)is convenient to transmit the wide area signal through the communication channel to the remote location.Communication failure is one of the disastrous phenomena in a communication channel.In this paper,a dual input single output(DISO)Hm controller is designed to build the control resiliency by employing two highest observability ranking wide area signals with respect to the critical damping inter-area mode.The proposed controller can provide sufficient damping to the system and also the system remains stabilized if one of the wide-area signals is lost.The time delay is an unwanted phenomenon that degrades the performance of the controllers.The unified Smith predictor approach is used to design a Hm controller to handle the time delay.Kundur's two-area and IEEE-39 bus test systems are considered to verify the effectiveness of the proposed controller.From the simulation results,it is verified that,the proposed controller provides excellent damping performance at normal communication and improves the controller resiliency to counteract the communication failure.展开更多
基金Supported by Special Project for Vegetable Innovation Team Construction of Shandong Modern Agriculture Industrial Technology System(SDAIT-02-022-13)
文摘On the basis of comparative analysis on the vegetable input-output efficiency of suburban and rural areas in 2011- 2012,this paper made co-integration test,impulse response and variance decomposition for the vegetable input-output relationship of suburban areas in 1998-2012. Comparative analysis indicated that the vegetable input-output benefit of suburban area declines,while that of rural area rises; empirical analysis indicated that there is a long-term stable relationship between labor cost of vegetable planting and vegetable income and between material cost of vegetable planting and vegetable income,but the vegetable income itself has certain lag effect,followed by material cost,and the labor cost has minimum influence. Finally,it came up with recommendations for improving suburban vegetable input-output relationship,including improving vegetable input security mechanism,improving farmers' quality and innovation ability,and increasing technological input.
文摘The paper proposes a novel H∞ load frequency control(LFC) design method for multi-area power systems based on an integral-based non-fragile distributed fixed-order dynamic output feedback(DOF) tracking-regulator control scheme. To this end, we consider a nonlinear interconnected model for multiarea power systems which also include uncertainties and timevarying communication delays. The design procedure is formulated using semi-definite programming and linear matrix inequality(LMI) method. The solution of the proposed LMIs returns necessary parameters for the tracking controllers such that the impact of model uncertainty and load disturbances are minimized. The proposed controllers are capable of receiving all or part of subsystems information, whereas the outputs of each controller are local. These controllers are designed such that the resilient stability of the overall closed-loop system is guaranteed. Simulation results are provided to verify the effectiveness of the proposed scheme. Simulation results quantify that the distributed(and decentralized) controlled system behaves well in presence of large parameter perturbations and random disturbances on the power system.
基金support by the Central Power Research Institute,India(CPRI/RD/RSOP/GRANT/2015)
文摘Inter-area low frequency oscillation in power system is one of the major problems for bulk power transmission through weak tie lines.Use of wide-area signal is more effective than the local area signal in damping out the inter-area oscillations.Wide area measurement system(WAMS)is convenient to transmit the wide area signal through the communication channel to the remote location.Communication failure is one of the disastrous phenomena in a communication channel.In this paper,a dual input single output(DISO)Hm controller is designed to build the control resiliency by employing two highest observability ranking wide area signals with respect to the critical damping inter-area mode.The proposed controller can provide sufficient damping to the system and also the system remains stabilized if one of the wide-area signals is lost.The time delay is an unwanted phenomenon that degrades the performance of the controllers.The unified Smith predictor approach is used to design a Hm controller to handle the time delay.Kundur's two-area and IEEE-39 bus test systems are considered to verify the effectiveness of the proposed controller.From the simulation results,it is verified that,the proposed controller provides excellent damping performance at normal communication and improves the controller resiliency to counteract the communication failure.