We fabricate the Tm-doped double cladding silica fiber by using the vapor-solution hybrid-doping method, then build up an all-fiber Tin-doped fiber laser which can provide the output power of up to 121 W, correspondin...We fabricate the Tm-doped double cladding silica fiber by using the vapor-solution hybrid-doping method, then build up an all-fiber Tin-doped fiber laser which can provide the output power of up to 121 W, corresponding to a slope efficiency of 51% and an optical-optical efficiency of 48%. By using the domestic Tin-doped fiber, it is the first time a hundred-watt level output at 1915nm has been achieved, to the best of our knowledge. The thermal effect of Tm-doped fiber laser is also analyzed.展开更多
We report on the room-temperature cascade laser (QCL) at λ -4.7μm. cw operation of a surface grating Both grating design and material distributed feedback (DFB) quantum optimization are used to decrease the thre...We report on the room-temperature cascade laser (QCL) at λ -4.7μm. cw operation of a surface grating Both grating design and material distributed feedback (DFB) quantum optimization are used to decrease the threshold current density and to increase the output power. For a high-reflectivity-coated 13-μm-wide and 4- mm-long laser, high wall-plug efficiency of 6% is obtained at 20℃ from a single facet producing over I W of ew output power. The threshold current density of DFB QCL is as low as 1.13kA/cm^2 at 10℃ and 1.34kA/cm2 at 30℃ in cw mode. Stable single-mode emission with a side-mode suppression ratio of about 30 dB is observed in tile working temperature range of 20-50℃.展开更多
Theoretical analysis model has been established for CO 2 laser to describe the process of dynamic emission in the electrooptically Q switched laser .The electron excitation and the energy transfer of vibration level a...Theoretical analysis model has been established for CO 2 laser to describe the process of dynamic emission in the electrooptically Q switched laser .The electron excitation and the energy transfer of vibration level and the rotational relaxation of rotational levels are described. The comparison between this model and a set of coupled rat equations model are discussed.展开更多
In order to solve the disadvantages caused by mechanical slide rheostat that has big errors and low precision,a novel voltage regulation method for high voltage DC power supply was introduced.The key of this method we...In order to solve the disadvantages caused by mechanical slide rheostat that has big errors and low precision,a novel voltage regulation method for high voltage DC power supply was introduced.The key of this method were digital potentiometer MAXIM 5455 and linear photoelectric coupling LOC110,and application programs were compiled using Visual Basic which was graphical compiling language,furthermore the communication between exterior and computer was carried out by ICP7044D module,in consequence the output value of high voltage DC power supply could be regulated with computer.The measured results showed that this method could accurately,conveniently and rapidly regulate the output value of high voltage DC power supply.展开更多
Based on the high-speed development of the fiber laser in recent years, the development of researching 915 nm semiconductor laser as main pumping sources of the fiber laser is at a high speed. Because the beam quality...Based on the high-speed development of the fiber laser in recent years, the development of researching 915 nm semiconductor laser as main pumping sources of the fiber laser is at a high speed. Because the beam quality of the laser diode is very poor, the 915 nm laser diode is generally based on optical fiber coupling module to output the laser. Using the beam-shaping and fiber-coupling technology to improve the quality of output beam light, we present a kind of high-power and high-brightness semiconductor laser module, which can output 13.22 W through the optical fiber. Based on 915 nm GaAs semiconductor laser diode which has output power of 13.91 W, we describe a thoroughly detailed procedure for reshaping the beam output from the semiconductor laser diode and coupling the beam into the optical fiber of which the core diameter is 105 μm and the numerical aperture is 0.18. We get 13.22 W from the output fiber of the module at 14.5 A, the coupling efficiency of the whole module is 95.03% and the brightness is 1.5 MW/cm2-str. The output power of the single chip semiconductor laser module achieves the advanced level in the domestic use.展开更多
Abstract---The stability of the drive current is very important for a laser driver, while it is difficult to maintain the current stable at a high value for the laser driver. On the other hand, the range of the drive ...Abstract---The stability of the drive current is very important for a laser driver, while it is difficult to maintain the current stable at a high value for the laser driver. On the other hand, the range of the drive current is expected to be as wide as possible to be applied to different kinds of lasers. In this paper, a high current laser driver for the superluminescent light emitting diode (SLED) is presented, which is used in the optic fiber gyro embedded by a 0.35 μm bipolar complementary metal-oxide-semiconductor transistor (BiCMOS) process. The laser driver provides automatic power control and certain value of current determined by the external resister. The system is based on the optic-electric feedback theory and uses the closed-loop control technique to maintain the drive current stable. The system is capable of producing stable current ranges from 4 mA to 200 mA when the value of external resister changes.展开更多
High-power fiber-to-fiber coupling is extensively used in fiber laser applications,and its performance is determined by coupling efficiency.We demonstrate a novel method for alignment and monitoring efficiency by dete...High-power fiber-to-fiber coupling is extensively used in fiber laser applications,and its performance is determined by coupling efficiency.We demonstrate a novel method for alignment and monitoring efficiency by detecting backscattering power at the fiber end cap.The relationship between alignment error and backscattering power is determined by simulations and experiments.Through this method,a state-of-the-art kW-level fiberto-fiber optic switch is developed(transmission efficiency>97%).It performs well for longer than 60 min.To the best of our knowledge,it is the first time to establish the mathematical model based on this method.Our results can provide guidance in high-power fiber-to-fiber coupling.展开更多
We present a 940 nm quasi-continuous wave semiconductor laser designed as a building block for high-power fiber coupled pump modules.The laser comprises a 400μm narrow-stripe array mounted on an aluminum nitride subs...We present a 940 nm quasi-continuous wave semiconductor laser designed as a building block for high-power fiber coupled pump modules.The laser comprises a 400μm narrow-stripe array mounted on an aluminum nitride substrate using hard solder.The chip has been optimized for high optical power and low lateral far-field angles.Two vertical and six lateral structure variations have been investigated to determine the best achievable performance.Operating at 1 ms pulse width and a repetition rate of 10 Hz,the laser device reaches a maximum pulse power of 86 W from a 400μm aperture and more than 62%maximum conversion efficiency.Low lateral far-field angles(95%power enclosed)of11.5 and 13.5,depending on the epitaxial design,enable efficient multimode fiber coupling.The potential for highly reliable applications has been demonstrated.展开更多
基金Supported by the National High-Technology Research and Development Program of China under Grant No 2013AA031501the National Natural Science Foundation of China for Director Fund of WNLO
文摘We fabricate the Tm-doped double cladding silica fiber by using the vapor-solution hybrid-doping method, then build up an all-fiber Tin-doped fiber laser which can provide the output power of up to 121 W, corresponding to a slope efficiency of 51% and an optical-optical efficiency of 48%. By using the domestic Tin-doped fiber, it is the first time a hundred-watt level output at 1915nm has been achieved, to the best of our knowledge. The thermal effect of Tm-doped fiber laser is also analyzed.
基金Supported by the National Basic Research Program of China under Grant Nos 2013CB632801 and 2013CB632803the National Natural Science Foundation of China under Grant Nos 61435014,61306058 and 61274094the Beijing Natural Science Foundation under Grant No 4144086
文摘We report on the room-temperature cascade laser (QCL) at λ -4.7μm. cw operation of a surface grating Both grating design and material distributed feedback (DFB) quantum optimization are used to decrease the threshold current density and to increase the output power. For a high-reflectivity-coated 13-μm-wide and 4- mm-long laser, high wall-plug efficiency of 6% is obtained at 20℃ from a single facet producing over I W of ew output power. The threshold current density of DFB QCL is as low as 1.13kA/cm^2 at 10℃ and 1.34kA/cm2 at 30℃ in cw mode. Stable single-mode emission with a side-mode suppression ratio of about 30 dB is observed in tile working temperature range of 20-50℃.
文摘Theoretical analysis model has been established for CO 2 laser to describe the process of dynamic emission in the electrooptically Q switched laser .The electron excitation and the energy transfer of vibration level and the rotational relaxation of rotational levels are described. The comparison between this model and a set of coupled rat equations model are discussed.
基金Project Supported by National Natural Science Foundation of China(50637020).
文摘In order to solve the disadvantages caused by mechanical slide rheostat that has big errors and low precision,a novel voltage regulation method for high voltage DC power supply was introduced.The key of this method were digital potentiometer MAXIM 5455 and linear photoelectric coupling LOC110,and application programs were compiled using Visual Basic which was graphical compiling language,furthermore the communication between exterior and computer was carried out by ICP7044D module,in consequence the output value of high voltage DC power supply could be regulated with computer.The measured results showed that this method could accurately,conveniently and rapidly regulate the output value of high voltage DC power supply.
文摘Based on the high-speed development of the fiber laser in recent years, the development of researching 915 nm semiconductor laser as main pumping sources of the fiber laser is at a high speed. Because the beam quality of the laser diode is very poor, the 915 nm laser diode is generally based on optical fiber coupling module to output the laser. Using the beam-shaping and fiber-coupling technology to improve the quality of output beam light, we present a kind of high-power and high-brightness semiconductor laser module, which can output 13.22 W through the optical fiber. Based on 915 nm GaAs semiconductor laser diode which has output power of 13.91 W, we describe a thoroughly detailed procedure for reshaping the beam output from the semiconductor laser diode and coupling the beam into the optical fiber of which the core diameter is 105 μm and the numerical aperture is 0.18. We get 13.22 W from the output fiber of the module at 14.5 A, the coupling efficiency of the whole module is 95.03% and the brightness is 1.5 MW/cm2-str. The output power of the single chip semiconductor laser module achieves the advanced level in the domestic use.
文摘Abstract---The stability of the drive current is very important for a laser driver, while it is difficult to maintain the current stable at a high value for the laser driver. On the other hand, the range of the drive current is expected to be as wide as possible to be applied to different kinds of lasers. In this paper, a high current laser driver for the superluminescent light emitting diode (SLED) is presented, which is used in the optic fiber gyro embedded by a 0.35 μm bipolar complementary metal-oxide-semiconductor transistor (BiCMOS) process. The laser driver provides automatic power control and certain value of current determined by the external resister. The system is based on the optic-electric feedback theory and uses the closed-loop control technique to maintain the drive current stable. The system is capable of producing stable current ranges from 4 mA to 200 mA when the value of external resister changes.
基金supported by the National Key Research and Development Program of China(No.2017YFB1104402).
文摘High-power fiber-to-fiber coupling is extensively used in fiber laser applications,and its performance is determined by coupling efficiency.We demonstrate a novel method for alignment and monitoring efficiency by detecting backscattering power at the fiber end cap.The relationship between alignment error and backscattering power is determined by simulations and experiments.Through this method,a state-of-the-art kW-level fiberto-fiber optic switch is developed(transmission efficiency>97%).It performs well for longer than 60 min.To the best of our knowledge,it is the first time to establish the mathematical model based on this method.Our results can provide guidance in high-power fiber-to-fiber coupling.
基金funded through the Senate Competition Committee (SAW) of the Leibniz Association within the Joint Initiative for Research and Innovation of the German Federal Government and the Lnder
文摘We present a 940 nm quasi-continuous wave semiconductor laser designed as a building block for high-power fiber coupled pump modules.The laser comprises a 400μm narrow-stripe array mounted on an aluminum nitride substrate using hard solder.The chip has been optimized for high optical power and low lateral far-field angles.Two vertical and six lateral structure variations have been investigated to determine the best achievable performance.Operating at 1 ms pulse width and a repetition rate of 10 Hz,the laser device reaches a maximum pulse power of 86 W from a 400μm aperture and more than 62%maximum conversion efficiency.Low lateral far-field angles(95%power enclosed)of11.5 and 13.5,depending on the epitaxial design,enable efficient multimode fiber coupling.The potential for highly reliable applications has been demonstrated.