期刊文献+
共找到2,115篇文章
< 1 2 106 >
每页显示 20 50 100
A critical review towards the causes of the iron-based catalysts deactivation mechanisms in the selective oxidation of hydrogen sulfide to elemental sulfur from biogas
1
作者 Mostafa Tarek Janaina S.Santos +4 位作者 Victor Márquez Mohammad Fereidooni Mohammad Yazdanpanah Supareak Praserthdam Piyasan Praserthdam 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期388-411,I0010,共25页
Hydrogen sulfide(H_(2)S) not only presents significant environmental concerns but also induces severe corrosion in industrial equipment,even at low concentrations.Among various technologies,the selective oxidation of ... Hydrogen sulfide(H_(2)S) not only presents significant environmental concerns but also induces severe corrosion in industrial equipment,even at low concentrations.Among various technologies,the selective oxidation of hydrogen sulfide(SOH_(2)S) to elemental sulfur(S) has emerged as a sustainable and environmentally friendly solution.Due to its unique properties,iron oxide has been extensively investigated as a catalyst for SOH_(2)S;however,rapid deactivation has remained a significant drawback.The causes of iron oxide-based catalysts deactivation mechanisms in SOH_(2)S,including sulfur or sulfate deposition,the transformation of iron species,sintering and excessive oxygen vacancy formation,and active site loss,are thoroughly examined in this review.By focusing on the deactivation mechanisms,this review aims to provide valuable insights into enhancing the stability and efficiency of iron-based catalysts for SOH_(2)S. 展开更多
关键词 Selective oxidation of H_(2)S iron-based Catalysts Mechanism of deactivation Sulfur or sulfate deposition Transformation of iron species Sintering SDG 7
下载PDF
40Ar-39Ar Dating of Albite and Phlogopite from Porphyry Iron Deposits in the Ningwu Basin in East-Central China and Its Significance 被引量:20
2
作者 YUJinjie MAOJingwen 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2004年第2期435-442,共8页
40Ar-39Ar dating of albite from the Meishan and Taocun iron deposits yields plateau ages of 122.90±0.16 Ma and 124.89±0.30 Ma, and isochron ages of 122.60±0.16 Ma and 124.90±0.29 Ma, respectively. ... 40Ar-39Ar dating of albite from the Meishan and Taocun iron deposits yields plateau ages of 122.90±0.16 Ma and 124.89±0.30 Ma, and isochron ages of 122.60±0.16 Ma and 124.90±0.29 Ma, respectively. Phlogopite from the Zhongshan-Gushan ore field has a plateau age of 126.7±0.17 Ma and an isochron age of 127.21±1.63 Ma. Analysis of regional geodynamic evolution of the middle-lower Yangtze River region suggests that the porphyry iron deposits were formed as a result of large-scale lithosphere delamination and strong sinistral strike-slip movement of the Tancheng Lujiang fault zone. The copper, molybdenum and gold deposit system in the middle-lower Yangtze River region was formed during the stress transition period of the eastern China continent. 展开更多
关键词 albite and phlogopite 40Ar- 39Ar dating porphyry iron deposit DELAMINATION Ningwu
下载PDF
Geochemistry of Apatite from the Apatite-rich Iron Deposits in the Ningwu Region,East Central China 被引量:5
3
作者 YU Jinjie ZHANG Qi +1 位作者 MAO Jingwen YAN Shenghao 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2007年第4期637-648,共12页
Four types of apatite have been identified in the Ningwu region. The first type of apatite is widely distributed in the middle dark colored zones (i.e. iron ores) of individual deposits. The assemblage includes magn... Four types of apatite have been identified in the Ningwu region. The first type of apatite is widely distributed in the middle dark colored zones (i.e. iron ores) of individual deposits. The assemblage includes magnetite, apatite and actinolite (or diopside). The second type occurs within magnetite-apatite veins in the iron ores. The third type is seen in magnetite-apatite veins and (or) nodules in host rocks (i.e. gabbro-diorite porphyry or gabbro-diorite or pyroxene diorite).The fourth type occurs within apatite-pyrite-quartz veins f'dfing fractures in the Xiangshan Group. Rare earth elements (REE) geochemistry of apatite of the four occurrences in porphyry iron deposits is presented. The REE distribution patterns of apatite are generally similar to those of apatites in the Kiruna-type iron ores, nelsonites. They are enriched in fight REE, with pronounced negative Eu anomalies. The similarity of REE distribution patterns in apatites from various deposits in different locations in the world indicates a common process of formation for various ore types, e.g. immiscibility. Early magmatic apatites contain 3031.48-12080 ×10^-6 REE. Later hydrothermal apatite contains 1958 ×10^-6 REE, indicating that the later hydrothermal ore-forming solution contains lower REE. Although gabbro-diorite porphyry and apatite show similar REE patterns, gabbro-diorite porphyries have no europium anomalies or feeble positive or feeble negative europium anomalies, caused both by reduction environment of mantle source region and by fractionation and crystallization (immiscibility) under a high oxygen fugacity condition. Negative Eu anomalies of apatites were formed possibly due to acquisition of Eu^2+ by earlier diopsite during ore magma cooling. The apatites in the Aoshan and Taishan iron deposits yield a narrow variation range of ^87Sr/^86Sr values from 0.7071 to 0.7073, similar to those of the volcanic and subvolcaulc rocks, indicating that apatites were formed by liquid immiscibility and differentiation of intermediate and basic magmas. 展开更多
关键词 iron deposit APATITE rare earth elements strontium isotope IMMISCIBILITY ore magma Ningwu
下载PDF
Occurrence of the Iron–rich Melt in the Heijianshan Iron Deposit, Eastern Tianshan, NW China: Insights into the Origin of Volcanic Rock–hosted Iron Deposits 被引量:5
4
作者 LI Houmin LI Lixing +4 位作者 DING Jianhua LI Yanhe SONG Zhe MENG Jie MA Yubo 《Acta Geologica Sinica(English Edition)》 CAS CSCD 2018年第2期666-681,共16页
Long-standing controversy persists over the presence and role of iron-rich melts in the formation of volcanic rock-hosted iron deposits. Conjugate iron-rich and silica-rich melt inclusions observed in thin-sections ar... Long-standing controversy persists over the presence and role of iron-rich melts in the formation of volcanic rock-hosted iron deposits. Conjugate iron-rich and silica-rich melt inclusions observed in thin-sections are considered as direct evidence for the presence of iron-rich melt, yet unequivocal outcrop-scale evidence of iron-rich melts are still lacking in volcanic rock-hosted iron deposits. Submarine volcanic rock-hosted iron deposits, which are mainly distributed in the western and eastern Tianshan Mountains in Xinjiang, are important resources of iron ores in China, but it remains unclear whether iron-rich melts have played a role in the mineralization of such iron ores. In this study, we observed abundant iron-rich agglomerates in the brecciated andesite lava of the Heijianshan submarine volcanic rock-hosted iron deposit, Eastern Tianshan, China. The iron-rich agglomerates occur as irregular and angular masses filling fractures of the host brecciated andesite lava. They show concentric potassic alteration with silicification or epidotization rims, indicative of their formation after the wall rocks. The iron-rich agglomerates have porphyritic and hyalopilitic textures, and locally display chilled margins in the contact zone with the host rocks. These features cannot be explained by hydrothermal replacement of wall rocks (brecciated andesite lava) which is free of vesicle and amygdale, rather they indicate direct crystallization of the iron-rich agglomerates from iron-rich melts. We propose that the iron-rich agglomerates were formed by open-space filling of volatile-rich iron-rich melt in fractures of the brecciated andesite lava. The iron-rich agglomerates are compositionally similar to the wall-rock brecciated andesite lava, but have much larger variation. Based on mineral assemblages, the iron-rich agglomerates are subdivided into five types, i.e., albite-magnetite type, albite-K-feldspar- magnetite type, K-feldspar-magnetite type, epidote-magnetite type and quartz-magnetite type, representing that products formed at different stages during the evolution of a magmatic-hydrothermal system. The albite-magnetite type represents the earliest crystallization product from a residual iron- rich melt; the albite-K-feldspar-magnetite and K-feldspar-magnetite types show features of magmatic- hydrothermal transition, whereas the epidote-magnetite and quartz-magnetite types represent products of hydrothermal alteration. The occurrence of iron-rich agglomerates provides macroscopic evidence for the presence of iron-rich melts in the mineralization of the Heijianshan iron deposit. It also indicates that iron mineralization of submarine volcanic rock-hosted iron deposits is genetically related to hydrothermal fluids derived from iron-rich melts. 展开更多
关键词 iron-rich agglomerates iron-rich melt volatile submarine volcanic iron deposit Heijianshan Eastern Tianshan
下载PDF
A synthesis of iron deposits in the eastern Tianshan,NW China 被引量:5
5
作者 Jiahao Zheng 《Geoscience Frontiers》 SCIE CAS CSCD 2020年第4期1271-1287,共17页
The northern Xinjiang region is one of the most significant iron metallogenic provinces in China.Iron deposits are found mainly within three regions:the Altay,western Tianshan,and eastern Tianshan orogenic belts.Previ... The northern Xinjiang region is one of the most significant iron metallogenic provinces in China.Iron deposits are found mainly within three regions:the Altay,western Tianshan,and eastern Tianshan orogenic belts.Previous studies have elaborated on the genesis of Fe deposits in the Altay orogenic belt and western Tianshan.However,the geological characteristics and mineralization history of iron deposits in the eastern Tianshan are still poorly understood.In this paper I describe the geological characteristics of iron deposits in the eastern Tianshan,and discuss their genetic types as well as metallogenic-tectonic settings,Iron deposits are preferentially distributed in central and southern parts of the eastern Tianshan.The known iron deposits in the eastern Tianshan show characteristics of magmatic Fe-Ti-V(e.g.,Weiya and Niumaoquan),sedimentary-metamorphic type(e.g.,Tianhu),and iron skarn(e.g.,Hongyuntan).In addition to the abovementioned iron deposits,many iron deposits in the eastern Tianshan are hosted in submarine volcanic rocks with well-developed skarn mineral assemblages.Their geological characteristics and magnetite compositions suggest that they may belong to distal skarns.SIMS zircon U-Pb analyses suggest that the Fe-Ti oxide ores from Niumaoquan and Weiya deposits were formed at 307.7±1.3 Ma and 242.7±1.9 Ma,respectively.Combined with available isotopic age data,the timing of Fe mineralization in the eastern Tianshan can be divided into four broad intervals:Early Ordovician-Early Silurian(476-438 Ma),Carboniferous(335-303 Ma),Early Permian(295-282 Ma),and Triassic(ca.243 Ma).Each of these episodes corresponds to a period of subduction,post-collision,and intraplate tectonics during the Paleozoic and Mesozoic time. 展开更多
关键词 iron deposits Geological characteristics Ore-forming ages Genetic types Eastern Tianshan
下载PDF
The occurrences and geochemical characteristics of thorium in iron ore in the Bayan Obo deposit, Northern China 被引量:1
6
作者 Xiaozhi Hou Zhanfeng Yang +1 位作者 Zhenjiang Wang Wencai Wang 《Acta Geochimica》 EI CAS CSCD 2020年第1期139-154,共16页
The Bayan Obo deposit in northern China is an ultra-large Fe–REE–Nb deposit.The occurrences,and geochemical characteristics of thorium in iron ores from the Bayan Obo Main Ore Body were examined using chemical analy... The Bayan Obo deposit in northern China is an ultra-large Fe–REE–Nb deposit.The occurrences,and geochemical characteristics of thorium in iron ores from the Bayan Obo Main Ore Body were examined using chemical analysis,field emission scanning electron microscopy,energy dispersive spectrometer,and automatic mineral analysis software.Results identified that 91.69%of ThO2 in the combined samples was mainly distributed in rare earth minerals(bastnaesite,huanghoite,monazite;56.43%abundance in the samples),iron minerals(magnetite,hematite,pyrite;20.97%),niobium minerals(aeschynite;14.29%),and gangue minerals(aegirine,riebeckite,mica,dolomite,apatite,fluorite;4.22%).An unidentified portion(4.09%)of ThO2 may occur in other niobium minerals(niobite,ilmenorutile,pyrochlore).Only a few independent minerals of thorium occur in the iron ore samples.Thorium mainly occurs in rare earth minerals in the form of isomorphic substitution.Analyses of the geochemical characteristics of the major elements indicate that thorium mineralization in the Main Ore Body was related to alkali metasomatism,which provided source material and favorable porosity for hydrothermal mineralization.Trace elements such as Sc,Nb,Zr,and Ta have higher correlation coefficients with thorium,which resulted from being related to the relevant minerals formed during thorium mineralization.In addition,correlation analysis of ThO2 and TFe,and REO and TFe in the six types of iron ore samples showed that ThO2 did not always account for the highest distribution rate in rare earth minerals,and the main occurrence minerals of ThO2 were closely related to iron ore types. 展开更多
关键词 THORIUM Occurrence state Distribution law Geochemical characteristics iron ore Bayan Obo deposit
下载PDF
The Major Ore Clusters of Super-Large Iron Deposits in the World, Present Situation of Iron Resources in China, and Prospect 被引量:2
7
作者 ZHAO Yiming FENG Chengyou LI Daxin 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2014年第6期1895-1915,共21页
The metamorphosed sedimentary type of iron deposits(BIF) is the most important type of iron deposits in the world, and super-large iron ore clusters of this type include the Quadrilatero Ferrifero district and Caraj... The metamorphosed sedimentary type of iron deposits(BIF) is the most important type of iron deposits in the world, and super-large iron ore clusters of this type include the Quadrilatero Ferrifero district and Carajas in Brazil, Hamersley in Australia, Kursk in Russia, Central Province of India and Anshan-Benxi in China. Subordinated types of iron deposits are magmatic, volcanic-hosted and sedimentary ones. This paper briefly introduces the geological characteristics of major super-large iron ore clusters in the world. The proven reserves of iron ores in China are relatively abundant, but they are mainly low-grade ores. Moreover, a considerate part of iron ores are difficult to utilize for their difficult ore dressing, deep burial or other reasons. Iron ore deposits are relatively concentrated in 11 metallogenic provinces(belts), such as the Anshan-Benxi, eastern Hebei, Xichang-Central Yunnan Province and middle-lower reaches of Yangtze River. The main minerogenetic epoches vary widely from the Archean to Quaternary, and are mainly the Late Archean to Middle Proterozoic, Variscan, and Yanshanian periods. The main 7 genetic types of iron deposits in China are metamorphosed sedimentary type(BIF), magmatic type, volcanic-hosted type, skarn type, hydrothermal type, sedimentary type and weathered leaching type. The iron-rich ores occur predominantly in the skarn and marine volcanic-hosted iron deposits, locally in the metamorphosed sedimentary type(BIF) as hydrothermal reformation products. The theory of minerogenetic series of mineral deposits and minerogenic models has applied in investigation and prospecting of iron ore deposits. A combination of deep analyses of aeromagnetic anomalies and geomagnetic anomalies, with gravity anomalies are an effective method to seeking large and deep-buried iron deposits. China has a relatively great oresearching potential of iron ores, especially for metamorphosed sedimentary, skarn, and marine volcanic-hosted iron deposits. For the lower guarantee degree of iron and steel industry, China should give a trading and open the foreign mining markets. 展开更多
关键词 major ore clusters of super-large iron deposits present situation of iron ore resources in China genetic type temporal-spatial distribution ore-searching potential
下载PDF
Zircon U-Pb-Hf isotopes and mineral chemistry of Early Cretaceous granodiorite in the Lunggar iron deposit in central Lhasa, Tibet Y, China 被引量:1
8
作者 ZHANG Yun-hui WANG Yang-shuang +2 位作者 WANG Wen-shu LIU Jie YUAN Ling-ling 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第12期3457-3469,共13页
The Lunggar iron deposit belongs to the Bangong-Nujiang metallogenic belt and is located in central Lhasa on the Tibetan Plateau.In the Lunggar deposit,iron mineralization formed in the skarnization contact zone betwe... The Lunggar iron deposit belongs to the Bangong-Nujiang metallogenic belt and is located in central Lhasa on the Tibetan Plateau.In the Lunggar deposit,iron mineralization formed in the skarnization contact zone between the Early Cretaceous granodiorite and the late Permian Xiala Formation limestone.In this study,we achieved detailed zircon U-Pb-Hf isotopes and mineral chemistry for the Early Cretaceous granodiorite.Zircon U-Pb dating results indicate that the Early Cretaceous granodiorite emplaced at ca.119 Ma.Based on the trace elements in zircons and the mineral chemical composition of amphibole and biotite,the Early Cretaceous granodiorite was believed to form under condition of high temperature(>700°C),low pressure(100400 MPa),and relatively high oxygen fugacity(lgfO2)(13.6 to 13.9)and H2O content(4%8%).Zircon trace elements,Hf isotope and biotite chemistry collectively reveal that significant juvenile mantle-derived magmas contributed to the source of the granodiorite.The relatively high logfO2 and shallow magma chamber are beneficial for skarn iron mineralization,implying remarkable potential for further prospecting in the Lunggar iron deposit. 展开更多
关键词 zircon U-Pb-Hf isotope mineral chemistry crystallization condition Lunggar iron deposit central Lhasa
下载PDF
Chitosan—The Application of a Natural Polymer against Iron Hydroxide Deposition 被引量:1
9
作者 Simona Schwarz Christine Steinbach +2 位作者 Dana Schwarz Mandy Mende Regine Boldt 《American Journal of Analytical Chemistry》 2016年第8期623-632,共10页
As a consequence of mining, heavy metal ions can be exposed to the environment hence contaminate ground water and surface water amongst others. The natural polymer chitosan was proved to be an excellent adsorber mater... As a consequence of mining, heavy metal ions can be exposed to the environment hence contaminate ground water and surface water amongst others. The natural polymer chitosan was proved to be an excellent adsorber material for the effective removal of iron and sulfate ions in batch as well as in column experiments. The adsorption behavior of iron ions, as well as sulfate ions was investigated by utilizing chitosan flakes as a natural adsorbent. The removal was studied using adsorbance measurements, SEM and SEM-EDX. The adsorption capacity of chitosan was determined at different times. The received adsorption capacities for iron ions were very promising with a maximum adsorption capacity of 85 mg/g and a rate of separation of 100%. The maximum adsorption capacity obtained for sulfate ions was 188.8 mg/g and a rate of 80%. 展开更多
关键词 CHITOSAN Adsorption of iron- and Sulfate Ions iron hydroxide deposition
下载PDF
Biomarkers (Alkanes )of the Xuanlong - Type Iron Deposits
10
作者 Liu Zhili, Liu Xuexian, Li Pengfu Department of Biology, Nanjing University, Nanjing, Jiangsuand Du Rulin Hebei College of Geology, Shijiazhuang, Hebei Fei Zhenbi 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 1995年第4期387-395,共9页
The authors studied the biomarkers (alkanes) of eight iron ore samples from Nianpanshan and Dsbaodui of Pangjiabao and Longguan, Xuanhua, Hebei. These samples have higher nC15-nC20 contents, with main peaks at nC16, n... The authors studied the biomarkers (alkanes) of eight iron ore samples from Nianpanshan and Dsbaodui of Pangjiabao and Longguan, Xuanhua, Hebei. These samples have higher nC15-nC20 contents, with main peaks at nC16, nC 17 and nC18, and contain abundant pristane and phytane. These results indicate that iron stromatolite and iron oncolites in orebodies are sedimentary structures of algal origin. Sedimentary iron accumulation mainly results from activity of blue algae. This study provides new valuable evidence for the origin of Xuanlong-type iron deposits. 展开更多
关键词 Xuanlong iron deposit ALGA BIOMARKER ALKANE
下载PDF
Effect of welding process methods on the regularity of iron element in copper/steel deposited layer
11
作者 王艳 李龙庆 +1 位作者 卢红 王君君 《China Welding》 EI CAS 2013年第2期55-59,共5页
Copper was surfaced on the Q235 substrate by shielded metal arc welding (SMAW) and tungsten inert-gas (TIG) arc welding, the regularity of iron element in deposited metal was analyzed by metallograph, scanning ele... Copper was surfaced on the Q235 substrate by shielded metal arc welding (SMAW) and tungsten inert-gas (TIG) arc welding, the regularity of iron element in deposited metal was analyzed by metallograph, scanning electron microscopy and energy disperse spectroscopy. The results indicate that with the increase of SMA W welding speed, the iron content decreases and the granular or spherical iron becomes more bulky in the overlay. The iron content obviously decreases with the increase of surfacing layers' numbers in multilayer welding because of the substrate dilution. On the third layer, the microstrueture of deposited metal is single-phase e-copper. Under the influence of welding methods, the granular or spherical crystal morphology is more likely to form in SMAW for the more divergent arc heat, but is dendrite in TIG welding because of centralized arc energy. 展开更多
关键词 welding speed welding method deposited metal iron content
下载PDF
Investigation on the Geochemical Distribution of REE and Heavy Metals in Western Part of Jalal-Abad Iron Ore Deposit, Zarand, SE of Iran
12
作者 Abdollah Yazdi Sajad Ziaaldini Rahim Dabiri 《Open Journal of Ecology》 2015年第9期460-476,共17页
The Jalal-Abad iron ore deposit, with a reserve of more than 200 Mt ore, is located in NW of Zarand region, southeastern Iran. The ore deposit occurs in the form of an elongated lens-shaped body incorporated in a fold... The Jalal-Abad iron ore deposit, with a reserve of more than 200 Mt ore, is located in NW of Zarand region, southeastern Iran. The ore deposit occurs in the form of an elongated lens-shaped body incorporated in a folded structure of Rizu volcano-sedimentary unit. Mineralization occurred mainly in siltstones, acidic volcanic rocks and dolomitized limestones. The ore minerals include magnetite, hematite, pyrite, chalcopyrite, goethite, malachite and azurite. Chloritization and silicification are the two most widespread alteration types in the Jalal-Abad area. Cu and Ti are among the associated elements with iron in the ore samples. In comparison, the concentrations of Cu, Ti and REE are relatively low in the samples analyzed. The combined concentrations of Ce, La and Y show that geochemical background values for most areas have been measured. The Pearson correlation coefficient values and the results of cluster and principal component analyses indicate a strong correlation between REE, La, Ce, and Y with Sr in the same geochemical group suggesting a common source for these elements. A close association between Cu and Cl with metasomatic host rock and among Pb, Zn and Ba with carbonate host rocks is observed. 展开更多
关键词 REE HEAVY Metals iron ORE deposit Jalal-Abad Zarand
下载PDF
A preliminary study on ore-forming environments of Xianglushan-type iron deposit and the weathering mineralization of Emeishan basalt in Guizhou Province, China
13
作者 Guofan Cheng Youping Liu +2 位作者 Hansheng Long Tao Cui Ning Yu 《Acta Geochimica》 EI CAS CSCD 2017年第3期556-565,共10页
Xianglushan-type iron deposits are one of the new types of iron deposits found in the Weining Area of Western Guizhou. The iron-bearing rock system is a paleo-weathered crustal sedimentary(or accumulating) stratum bet... Xianglushan-type iron deposits are one of the new types of iron deposits found in the Weining Area of Western Guizhou. The iron-bearing rock system is a paleo-weathered crustal sedimentary(or accumulating) stratum between the top of the Middle-Late Permian Emeishan basalt formation and the Late Permian Xuanwei formation. Iron ore is hosted in the Lower-Middle part of the rock system. In terms of the genesis of mineral deposit, this type of deposit should be a basalt paleo-weathering crustal redeposit type, very different from marine sedimentary iron deposits or continental weathering crust iron deposits. Based on field work and the analytical results of XRD Powder Diffraction, Electron Probe, Scanner Electron Microscope, etc., the geological setting of the ore-forming processes and the deposit features are illustrated in this paper. The ore-forming environment of the deposit and the Emeishan basalt weathering mineralization are also discussed in order to enhance the knowledge of the universality and diversity of mineralization of the Emeishan Large Igneous Province(ELIP), which may be a considerable reference to further research for ELIP metallogenic theories, and geological research for iron deposits in the paleo-weathering crust areas of the Emeishan basalt,Southwestern, China. 展开更多
关键词 Emeishan basalt paleo-weathering crust Xianglushan-type iron deposit Ore-forming environment Weathering mineralization Western Guizhou Province
下载PDF
Structural Origin of the Red-Ribbon Style Iron Ores in the Xinyu Iron Deposit,Central Jiangxi Province
14
作者 CHEN Zhengle ZHANG Qing +3 位作者 CHEN Bailin WANG Xueping SHEN Tao WU Junjie 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2015年第2期691-692,共2页
The Xinyu iron deposit, located in central Jiangxi Province, is one of the most important BIF-type deposits in China. It is hosted in the Late Proterozoic volcanic- sedimentary rocks, which are composed of sericite- c... The Xinyu iron deposit, located in central Jiangxi Province, is one of the most important BIF-type deposits in China. It is hosted in the Late Proterozoic volcanic- sedimentary rocks, which are composed of sericite- chlorite pyhllite, magnetite-bearing chlorite phyllite or schist, magnetite quartzite, and schist (Yu et al., 1989; Zeng et al., 2011). 展开更多
关键词 Structural Origin of the Red-Ribbon Style iron Ores in the Xinyu iron deposit Central Jiangxi Province
下载PDF
Geological Features,Mineralization Types and Metallogenic Setting of the Phlaythong Large Iron Deposit,Southern Laos
15
作者 LIU Shusheng FAN Wenyu +1 位作者 LUO Maojin YANG Yongfei 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2015年第4期1423-1424,共2页
The Phlaythong large iron deposit in Shampasak of southern Laos,is located in the Kon Tum microblock (Fig.1A),central-southern part of the Indo-China block,and the geographic coordinate of the central mining area is... The Phlaythong large iron deposit in Shampasak of southern Laos,is located in the Kon Tum microblock (Fig.1A),central-southern part of the Indo-China block,and the geographic coordinate of the central mining area is 14°43′04″ N and 106°07′02″ E. 展开更多
关键词 Geological Features Mineralization Types and Metallogenic Setting of the Phlaythong Large iron deposit Southern Laos TFe
下载PDF
Characteristics of Zhangsanying-Tongshanzi aeromagnetic anomaly zone and prospecting potential of iron deposits in northern Hebei,China
16
作者 LI Wenyong LIU Yanxu +3 位作者 LU Wenfen MA Guoqing ZHANG Chongshan ZHAO Jiawei 《Global Geology》 2020年第2期99-115,共17页
Based on the latest high-precision aeromagnetic data,an aeromagnetic anomaly zone is identified at Zhangsanying--Tongshanzi in northern Hebei Province.By the potential field conversion processing,including the reducti... Based on the latest high-precision aeromagnetic data,an aeromagnetic anomaly zone is identified at Zhangsanying--Tongshanzi in northern Hebei Province.By the potential field conversion processing,including the reduction to the pole,vertical derivative,upward continuation and residual anomaly,the authors analyzed the characteristics of three typical aeromagnetic anomalies in Zhangsanying--Tongshanzi aeromagnetic anomaly zone and their geological origin.The methods include the forward and inversion methods,such as 2.5D optimization fitting and Euler deconvolution.Moreover,combined with the geological outcrop,known iron deposits,ground magnetic survey and verification,the authors studied the relationship between the aeromagnetic anomalies and iron deposits.The result shows that the Zhangsanying--Tongshanzi aeromagnetic anomaly zone is composed of 10 large magnetic anomalies with high amplitude and clear boundary.The aeromagnetic anomalies are comparable and intrinsically related to the ground magnetic anomalies and IP anomalies,indicating that the anomalies are caused by magnetite deposits.It has good magnetite prospecting potential in the Zhangsanying--Tongshanzi aeromagnetic anomaly zone. 展开更多
关键词 Zhangsanying-Tongshanzi aeromagnetic anomaly zone forward and inversion ground survey and verification prospecting potential iron deposit northern Hebei
下载PDF
Geological - Geophysical - Geochemical Exploration Models of Copper - Iron Deposits in Southeastern Hubei
17
作者 Guo XuequanSoutheast Hubei Geological Party, Hubei Bureau of Geology and Mineral Resources, Daye, Hubei 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 1994年第3期299-309,共11页
This paper discusses geological-geophysical-geochemical models of such typical deposits as the Tieshan-type Fe-Cu deposit, the Tonglushan-type Cu-Fe deposit, the Yehuaxiang-type Cu deposit, the Jiguanzui-type Cu-Au de... This paper discusses geological-geophysical-geochemical models of such typical deposits as the Tieshan-type Fe-Cu deposit, the Tonglushan-type Cu-Fe deposit, the Yehuaxiang-type Cu deposit, the Jiguanzui-type Cu-Au deposit, and the Tongshankou-type Cu (Mo) deposit. The models were established based on practical data of the polymetallic deposits dominated by copper ore in southeastern Hubei. These models, which are graphically illustrated in the paper, systematically summarize the metallogenic geological conditions and the geophysical-geochemical characteristics of copper deposits in this area. The models are of practical significance for studying copper deposits, predicting mineral resources, choosing exploration methods, and searching for ore deposits based on existing ones in the study area. 展开更多
关键词 southeastern Hubei copper-iron deposits composite exploration model
下载PDF
The conjunction of factors that lead to formation of giant gold provinces and deposits in non-arc settings 被引量:13
18
作者 David I.Groves Richard J.Goldfarb M.Santosh 《Geoscience Frontiers》 SCIE CAS CSCD 2016年第3期303-314,共12页
It is quite evident that it is not anomalous metal transport,nor unique depositional conditions,nor any single factor at the deposit scale,that dictates whether a mineral deposit becomes a giant or not.A hierarchical ... It is quite evident that it is not anomalous metal transport,nor unique depositional conditions,nor any single factor at the deposit scale,that dictates whether a mineral deposit becomes a giant or not.A hierarchical approach thus is required to progressively examine controlling parameters at successively decreasing scales in the total mineral system to understand the location of giant gold deposits in non-arc environments.For giant orogenic,intrusion-related gold systems(IRGS) and Carlin-type gold deposits and iron oxide-copper-gold(IOCG) deposits,there are common factors among all of these at the lithospheric to crustal scale.All are sited in giant gold provinces controlled by complex fundamental fault or shear zones that follow craton margins or,in the case of most Phanerozoic orogenic giants,define the primary suture zones between tectonic terranes.Giant provinces of IRGS,IOCG,and Carlin-type deposits require melting of metasomatized lithosphere beneath craton margins with ascent of hybrid lamprophyric to granitic magmas and associated heat flux to generate the giant province.The IRGS and IOCG deposits require direct exsolution of volatile-rich magmatic-hydrothermal fluids,whereas the association of such melts with Carlin-type ores is more indirect and enigmatic.Giant orogenic gold provinces show no direct relationship to such magmatism.forming from metamorphic fluids,but show an indirect relationship to lamprophyres that reflect the mantle connectivity of controlling first-order structures.In contrast to their province scale similarities,the different giant gold deposit styles show contrasting critical controls at the district to deposit scale.For orogenic gold deposits,the giants appear to have formed by conjunction of a greater number of parameters to those that control smaller deposits,with resultant geometrical and lithostratigraphic complexity as a guide to their location.There are few giant IRGS due to their inferior fluid-flux systems relative to orogenic gold deposits,and those few giants are essentially preservational exceptions.Many Carlin-type deposits are giants due to the exceptional conjunction of both structural and lithological parameters that caused reactive and permeable rocks,enriched in syngenetic gold,to be located below an impermeable cap along antiformal "trends".Hydrocarbons probably played an important role in concentrating metal.The supergiant Post-Betze deposit has additional ore zones in strain heterogeneities surrounding the pre-gold Goldstrike stock.All unequivocal IOCG deposits are giant or near-giant deposits in terms of gold-equivalent resources,partly due to economic factors for this relatively poorly understood,low Cu-Au grade deposit type.The supergiant Olympic Dam deposit,the most shallowly formed deposit among the larger IOCGs,probably owes its origin to eruption of volatile-rich hybrid magma at surface,with formation of a large maar and intense and widespread brecciation,alteration and Cu-Au-U deposition in a huge rock volume. 展开更多
关键词 Giant gold deposits Orogenic gold Carlin deposits iron oxide-copper-gold deposits Intrusion-related gold systems LITHOSPHERE
下载PDF
Using trace elements of magnetite to constrain the origin of the Pingchuan hydrothermal low-Ti magnetite deposit in the Panxi area, SW China 被引量:3
19
作者 Yanjun Wang Weiguang Zhu +3 位作者 Hong Zhong Zhongjie Bai Junhua Yao Chong Xu 《Acta Geochimica》 EI CAS CSCD 2019年第3期376-390,共15页
The Pingchuan iron deposit, located in the Yanyuan region of Sichuan Province, SW China, has an ore reserve of 40 Mt with ~60 wt% Fe. Its genesis is still poorly understood. The Pingchuan iron deposit has a parageneti... The Pingchuan iron deposit, located in the Yanyuan region of Sichuan Province, SW China, has an ore reserve of 40 Mt with ~60 wt% Fe. Its genesis is still poorly understood. The Pingchuan iron deposit has a paragenetic sequence of an early Fe-oxide–Pyrite stage(Ⅰ) and a late Fe-oxide–pyrrhotite stage(Ⅱ). Stage Ⅰ magnetite grains are generally fragmented, euhedral–subhedral, largesized crystals accompanying with slightly postdated pyrite.Stage Ⅱ magnetite grains are mostly unfragmented, anhedral, relatively small-sized grains that co-exist with pyrrhotite. Combined with micro-textural features and previously-obtained geochronological data, we consider that these two stages of iron mineralization in the Pingchuan deposit correspond to the Permian ELIP magmatism and Cenozoic fault activity event. Both the Stage Ⅰ and Ⅱ magnetites are characterized with overall lower contents of trace elements(including Cr, Ti, V, and Ni) than the ELIP magmatic magnetite, which suggests a hydrothermal origin for them. ‘‘Skarn-like'' enrichment in Sn, Mn, and Zn in the Stage Ⅰ magnetite grains indicate significant material contributions from carbonate wall-rocks due to water–rock interaction in ore-forming processes. Stage Ⅱ magnetite grains contain higher Mn concentrations than Stage Ⅰ magnetite grains, which possibly implies more contribution from carbonate rocks. In multiple-element diagrams, the Stage Ⅰ magnetite shows systematic similarities to Kiruna-type magnetite rather than those from other types of deposits. Combined with geological features and previous studies on oxygen isotopes, we conclude that hydrothermal fluids have played a key role in the generation of the Pingchuan low-Ti iron deposit. 展开更多
关键词 SW China Pingchuan iron deposit Low-Ti iron deposit HYDROtheRMAL MAGNETITE
下载PDF
Investigation on Positive Correlation of Increased Brain Iron Deposition with Cognitive Impairment in Alzheimer Disease by Using Quantitative MR R2' Mapping 被引量:3
20
作者 覃媛媛 朱文珍 +4 位作者 占传家 赵凌云 王建枝 田青 王伟 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2011年第4期578-585,共8页
Brain iron deposition has been proposed to play an important role in the pathophysiology of Alzheimer disease(AD).The aim of this study was to investigate the correlation of brain iron accumulation with the severity... Brain iron deposition has been proposed to play an important role in the pathophysiology of Alzheimer disease(AD).The aim of this study was to investigate the correlation of brain iron accumulation with the severity of cognitive impairment in patients with AD by using quantitative MR relaxation rate R2' measurements.Fifteen patients with AD,15 age-and sex-matched healthy controls,and 30 healthy volunteers underwent 1.5T MR multi-echo T2 mapping and T2* mapping for the measurement of transverse relaxation rate R2'(R2'=R2*-R2).We statistically analyzed the R2' and iron concentrations of bilateral hippocampus(HP),parietal cortex(PC),frontal white matter(FWM),putamen(PU),caudate nucleus(CN),thalamus(TH),red nucleus(RN),substantia nigra(SN),and dentate nucleus(DN) of the cerebellum for the correlation with the severity of dementia.Two-tailed t-test,Student-Newman-Keuls test(ANOVA) and linear correlation test were used for statistical analysis.In 30 healthy volunteers,the R2' values of bilateral SN,RN,PU,CN,globus pallidus(GP),TH,and FWM were measured.The correlation with the postmortem iron concentration in normal adults was analyzed in order to establish a formula on the relationship between regional R2' and brain iron concentration.The iron concentration of regions of interest(ROI) in AD patients and controls was calculated by this formula and its correlation with the severity of AD was analyzed.Regional R2' was positively correlated with regional brain iron concentration in normal adults(r=0.977,P0.01).Iron concentrations in bilateral HP,PC,PU,CN,and DN of patients with AD were significantly higher than those of the controls(P0.05);Moreover,the brain iron concentrations,especially in parietal cortex and hippocampus at the early stage of AD,were positively correlated with the severity of patients' cognitive impairment(P0.05).The higher the R2' and iron concentrations were,the more severe the cognitive impairment was.Regional R2' and iron concentration in parietal cortex and hippocampus were positively correlated with the severity of AD patients' cognitive impairment,indicating that it may be used as a biomarker to evaluate the progression of AD. 展开更多
关键词 Alzheimer disease iron deposition quantitative magnetic resonance imaging transverse relaxation rate R2' imaging marker
下载PDF
上一页 1 2 106 下一页 到第
使用帮助 返回顶部