期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
BloomDT-An improved privacy-preserving decision tree inference scheme
1
作者 Sean Lalla Rongxing Lu +1 位作者 Yunguo Guan Songnian Zhang 《Journal of Information and Intelligence》 2024年第2期130-147,共18页
Outsourcing decision tree models to cloud servers can allow model providers to distribute their models at scale without purchasing dedicated hardware for model hosting.However,model providers may be forced to disclose... Outsourcing decision tree models to cloud servers can allow model providers to distribute their models at scale without purchasing dedicated hardware for model hosting.However,model providers may be forced to disclose private model details when hosting their models in the cloud.Due to the time and monetary investments associated with model training,model providers may be reluctant to host their models in the cloud due to these privacy concerns.Furthermore,clients may be reluctant to use these outsourced models because their private queries or their results may be disclosed to the cloud servers.In this paper,we propose BloomDT,a privacy-preserving scheme for decision tree inference,which uses Bloom filters to hide the original decision tree's structure,the threshold values of each node,and the order in which features are tested while maintaining reliable classification results that are secure even if the cloud servers collude.Our scheme's security and performance are verified through rigorous testing and analysis. 展开更多
关键词 Decision tree Privacy-preserving machine learning Bloom filter model outsourcing
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部