This paper deals with modeling corrosion wastage over the fuel tanks' structures at the exemplar of ten aged bulk carriers. In this paper, employed method might be treated as a long term one, and it is based on Weibu...This paper deals with modeling corrosion wastage over the fuel tanks' structures at the exemplar of ten aged bulk carriers. In this paper, employed method might be treated as a long term one, and it is based on Weibull distribution parameters analysis. The purpose of these analyses is optimal assessing of the average corrosion losses for the bulk carriers' fuel tanks areas at different points of time during the whole period of the exploitation, due to uprising the structural stability and safety of bulk carriers in operation. Though, the applied approach, among others, might be of particular importance in determining the amounts (percentage/depths) of time-dependent corrosion losses over different areas of aging bulk carriers' fuel tanks during the operational circles, with the ultimate goal of keeping stability and safety of these vital vessels' structural components.展开更多
In this paper, well-known and structured Monte Carlo simulation technique has been employed in predicting the amounts of the corrosion wastage over some bulk carriers' structural elements in different points of time ...In this paper, well-known and structured Monte Carlo simulation technique has been employed in predicting the amounts of the corrosion wastage over some bulk carriers' structural elements in different points of time during their exploitation life. As a base for the realization of the simulations, the appropriate statistical data collected over the group of ten bulk carriers have been used. Both longitudinal and transversal ships' hull structural elements have been taken into the consideration. Due to some experts' knowledge in this domain, the critical hull zones are identified and certain interventions are done in the pre-processing of the input data to the Monte Carlo simulations, all with the aim of achieving better convergence between simulation results and the experts' expectations in this field.展开更多
Evolutionary algorithm is applied as an optimization method in this paper. The increment of cumulative failure probability of fatigue, inspection cost, inspection interval and means are adopted as limiting condition, ...Evolutionary algorithm is applied as an optimization method in this paper. The increment of cumulative failure probability of fatigue, inspection cost, inspection interval and means are adopted as limiting condition, objective function and optimization variable respectively. According to fatigue characteristics of ship structure, the optimization research of inspecting fatigue deteriorating is carried out. The optimal inspection planning of minimal inspection cost is chosen. An example of computation and comparison of inspection plans is given. The results demonstrate that an optimal inspection plan considering security and economics can be chosen by the means in this paper.展开更多
Air lubrication by means of a bottom cavity is a promising method for ship drag reduction. The characteristics of the bottom cavity are sensitive to the flow field around the ship hull and the effect of drag reduction...Air lubrication by means of a bottom cavity is a promising method for ship drag reduction. The characteristics of the bottom cavity are sensitive to the flow field around the ship hull and the effect of drag reduction, especially the depth of the bottom cavity. In this study, a ship model experiment of a bulk carrier is conducted in a towing tank using the method of air layer drag reduction (ALDR) with different bottom cavity depths. The shape of the air layer is observed, and the changes in resistance are measured. The model experiments produce results of approximately 20% for the total drag reduction at the ship design speed for a 25-mm cavity continuously supplied with air at Cq = 0.224 in calm water, and the air layer covers the whole cavity when the air flow rate is suitable. In a regular head wave, the air layer is easily broken and reduces the drag reduction rate in short waves, particularly when λ/Lw1 is close to one;however, it still has a good drag reduction effect in the long waves.展开更多
Resistance prediction of ships using computational fluid dynamics has gained popularity over the years because of its high accuracy and low cost. This paper conducts numerical estimations of the ship resistance and mo...Resistance prediction of ships using computational fluid dynamics has gained popularity over the years because of its high accuracy and low cost. This paper conducts numerical estimations of the ship resistance and motion of a Japan bulk carrier model using SHIP_Motion, a Reynolds-averaged Navier–Stokes (RaNS)-based solver, and HydroSTAR, a commercial potential flow (PF)-based solver. The RaNS solver uses an overset-structured mesh and discretizes the flow field using the finite volume method, while the PF-based solver applies the three-dimensional panel method. In the calm water test, the total drag coefficient, sinkage, and trim were predicted using the RaNS solver following mesh dependency analysis, and the results were compared with the available experimental data. Next, calm water resistance was investigated for a range of Froude numbers. The added resistance in short-wave cases was simulated using both RaNS and PF solvers, and the results were compared. The PF solver showed better agreement with the RaNS solver for predicting motion responses than for predicting added resistance. While the added resistance results could not be directly validated because of the absence of experimental data, considering the previous accuracy of the RaNS solver in added resistance prediction and general added resistance profile of similar hull forms (bulk carriers), the prediction results could be concluded to be reliable.展开更多
A reduction of fuel consumption and an increase in efficiency are currently required for river–sea bulk carriers.Pre-swirl and ducted stators are widely used devices in the industry and efficiency gains can be obtain...A reduction of fuel consumption and an increase in efficiency are currently required for river–sea bulk carriers.Pre-swirl and ducted stators are widely used devices in the industry and efficiency gains can be obtained for single-screw and twin-screw vessels.Based on the hydrodynamic characteristics of the 20,000DWT river–sea bulk carrier,in this study,we proposed,designed,and tested a series of pre-swirl energy-saving devices(ESDs).The experimental results demonstrate that the proposed ESDs improved the propulsive efficiency and reduced the delivered power.The results confirm the success of our ESD for the 20,000DWT river–sea bulk carrier.We validated the role of Reynolds-averaged Navier–Stokes(RANS)computational fluid dynamics(CFD)in the twin-skeg river–sea vessel ESD design and found the circumferential arrangement and number of stators to be important factors in the design process.展开更多
The ultimate bending moment and maximal shear stress of a bulk carrier with two structural forms (single hull and double hull/ are calculated separately by using the combined moment which is determined by stochastic ...The ultimate bending moment and maximal shear stress of a bulk carrier with two structural forms (single hull and double hull/ are calculated separately by using the combined moment which is determined by stochastic process. Then the assessment of reliability is carried out. The results indicate that by introducing the double-hull structure, the shear stress of side can be decreased to half of that of the primary structure( 50.7% i. but the effect on longitudinal strength is not obvious. Finally, the effects of different double-side skin widths on ultimate bending moment and the maximal shear stress are investigated, followed by proposals of the selection of the double-side skin width.展开更多
The stress combination method for the fatigue assessment of the hatch comer of a bulk carrier was investigated based on equivalent waves. The principles of the equivalent waves of ship structures were given, including...The stress combination method for the fatigue assessment of the hatch comer of a bulk carrier was investigated based on equivalent waves. The principles of the equivalent waves of ship structures were given, including the determination of the dominant load parameter, heading, frequency, and amplitude of the equivalent regular waves. The dominant load parameters of the hatch comer of a bulk carrier were identified by the structural stress response analysis, and then a series of equivalent regular waves were defined based on these parameters. A combination method of the structural stress ranges under the different equivalent waves was developed for the fatigue analysis. The combination factors were obtained by least square regression analysis with the stress ranges derived from spectral fatigue analysis as the target value. The proposed method was applied to the hatch comer of another bulk carrier as an example. This shows that the results from the equivalent wave approach agree well with those from the spectral fatigue analysis. The workload is reduced substantially. This method can be referenced in the fatigue assessment of the hatch comer of a bulk carrier.展开更多
The wind-assisted propulsion system is becoming one of the most popular and efficient ways to reduce both fuel consumption and carbon dioxide emission from the ships.In this study,several analyses have been carried ou...The wind-assisted propulsion system is becoming one of the most popular and efficient ways to reduce both fuel consumption and carbon dioxide emission from the ships.In this study,several analyses have been carried out on a model of bulk carrier fitted with five rigid sails with a 180°rotating mechanism for maximum usage of wind power and a telescopic reefing mechanism for folding it during berthing.The stability of the ship has been verified through the calculations of initial stability,static stability,and dynamic stability through the fulfillment of the weather criterion using MAXSURF software.The structural analysis of the sail was carried out in ANSYS static structural module.Several flow simulations were carried out in ANSYS fluent module to predict the thrusts produced by the sails at different apparent wind angles,which would in turn reduce the thrust required from the propeller.In this way,the brake horse powers required for different sail arrangements were analyzed to find out a guideline for this wind propulsion system to generate better powering performances.To consider drift and yaw effect on propulsion system,an MMG mathematical model–based simulation was carried out for different drift angles of motion of the ship considering hard sail–based wind loads.Through these analyses,it has been found out that the hard sail–based wind-assisted propulsion system in some cases have produced a reduction of more than 30%brake power in straight ahead motion and around 20%reduction in case of drifting ships compared to the model having no sails.展开更多
文摘This paper deals with modeling corrosion wastage over the fuel tanks' structures at the exemplar of ten aged bulk carriers. In this paper, employed method might be treated as a long term one, and it is based on Weibull distribution parameters analysis. The purpose of these analyses is optimal assessing of the average corrosion losses for the bulk carriers' fuel tanks areas at different points of time during the whole period of the exploitation, due to uprising the structural stability and safety of bulk carriers in operation. Though, the applied approach, among others, might be of particular importance in determining the amounts (percentage/depths) of time-dependent corrosion losses over different areas of aging bulk carriers' fuel tanks during the operational circles, with the ultimate goal of keeping stability and safety of these vital vessels' structural components.
文摘In this paper, well-known and structured Monte Carlo simulation technique has been employed in predicting the amounts of the corrosion wastage over some bulk carriers' structural elements in different points of time during their exploitation life. As a base for the realization of the simulations, the appropriate statistical data collected over the group of ten bulk carriers have been used. Both longitudinal and transversal ships' hull structural elements have been taken into the consideration. Due to some experts' knowledge in this domain, the critical hull zones are identified and certain interventions are done in the pre-processing of the input data to the Monte Carlo simulations, all with the aim of achieving better convergence between simulation results and the experts' expectations in this field.
文摘Evolutionary algorithm is applied as an optimization method in this paper. The increment of cumulative failure probability of fatigue, inspection cost, inspection interval and means are adopted as limiting condition, objective function and optimization variable respectively. According to fatigue characteristics of ship structure, the optimization research of inspecting fatigue deteriorating is carried out. The optimal inspection planning of minimal inspection cost is chosen. An example of computation and comparison of inspection plans is given. The results demonstrate that an optimal inspection plan considering security and economics can be chosen by the means in this paper.
基金supported by the Ministry of Industry and High Technology Marine Scientific Research Projects(Grant No.2011530)the High Performance Marine Technology Key Laboratory of the Ministry of Education Open Foundation(Grant No.2013033102)
文摘Air lubrication by means of a bottom cavity is a promising method for ship drag reduction. The characteristics of the bottom cavity are sensitive to the flow field around the ship hull and the effect of drag reduction, especially the depth of the bottom cavity. In this study, a ship model experiment of a bulk carrier is conducted in a towing tank using the method of air layer drag reduction (ALDR) with different bottom cavity depths. The shape of the air layer is observed, and the changes in resistance are measured. The model experiments produce results of approximately 20% for the total drag reduction at the ship design speed for a 25-mm cavity continuously supplied with air at Cq = 0.224 in calm water, and the air layer covers the whole cavity when the air flow rate is suitable. In a regular head wave, the air layer is easily broken and reduces the drag reduction rate in short waves, particularly when λ/Lw1 is close to one;however, it still has a good drag reduction effect in the long waves.
文摘Resistance prediction of ships using computational fluid dynamics has gained popularity over the years because of its high accuracy and low cost. This paper conducts numerical estimations of the ship resistance and motion of a Japan bulk carrier model using SHIP_Motion, a Reynolds-averaged Navier–Stokes (RaNS)-based solver, and HydroSTAR, a commercial potential flow (PF)-based solver. The RaNS solver uses an overset-structured mesh and discretizes the flow field using the finite volume method, while the PF-based solver applies the three-dimensional panel method. In the calm water test, the total drag coefficient, sinkage, and trim were predicted using the RaNS solver following mesh dependency analysis, and the results were compared with the available experimental data. Next, calm water resistance was investigated for a range of Froude numbers. The added resistance in short-wave cases was simulated using both RaNS and PF solvers, and the results were compared. The PF solver showed better agreement with the RaNS solver for predicting motion responses than for predicting added resistance. While the added resistance results could not be directly validated because of the absence of experimental data, considering the previous accuracy of the RaNS solver in added resistance prediction and general added resistance profile of similar hull forms (bulk carriers), the prediction results could be concluded to be reliable.
基金supported by Ministry of Science and Technology of the People’s Republic of China No.2014BAG04B01
文摘A reduction of fuel consumption and an increase in efficiency are currently required for river–sea bulk carriers.Pre-swirl and ducted stators are widely used devices in the industry and efficiency gains can be obtained for single-screw and twin-screw vessels.Based on the hydrodynamic characteristics of the 20,000DWT river–sea bulk carrier,in this study,we proposed,designed,and tested a series of pre-swirl energy-saving devices(ESDs).The experimental results demonstrate that the proposed ESDs improved the propulsive efficiency and reduced the delivered power.The results confirm the success of our ESD for the 20,000DWT river–sea bulk carrier.We validated the role of Reynolds-averaged Navier–Stokes(RANS)computational fluid dynamics(CFD)in the twin-skeg river–sea vessel ESD design and found the circumferential arrangement and number of stators to be important factors in the design process.
文摘The ultimate bending moment and maximal shear stress of a bulk carrier with two structural forms (single hull and double hull/ are calculated separately by using the combined moment which is determined by stochastic process. Then the assessment of reliability is carried out. The results indicate that by introducing the double-hull structure, the shear stress of side can be decreased to half of that of the primary structure( 50.7% i. but the effect on longitudinal strength is not obvious. Finally, the effects of different double-side skin widths on ultimate bending moment and the maximal shear stress are investigated, followed by proposals of the selection of the double-side skin width.
基金Supported by the National Natural Science Foundation of China (50809019).
文摘The stress combination method for the fatigue assessment of the hatch comer of a bulk carrier was investigated based on equivalent waves. The principles of the equivalent waves of ship structures were given, including the determination of the dominant load parameter, heading, frequency, and amplitude of the equivalent regular waves. The dominant load parameters of the hatch comer of a bulk carrier were identified by the structural stress response analysis, and then a series of equivalent regular waves were defined based on these parameters. A combination method of the structural stress ranges under the different equivalent waves was developed for the fatigue analysis. The combination factors were obtained by least square regression analysis with the stress ranges derived from spectral fatigue analysis as the target value. The proposed method was applied to the hatch comer of another bulk carrier as an example. This shows that the results from the equivalent wave approach agree well with those from the spectral fatigue analysis. The workload is reduced substantially. This method can be referenced in the fatigue assessment of the hatch comer of a bulk carrier.
文摘The wind-assisted propulsion system is becoming one of the most popular and efficient ways to reduce both fuel consumption and carbon dioxide emission from the ships.In this study,several analyses have been carried out on a model of bulk carrier fitted with five rigid sails with a 180°rotating mechanism for maximum usage of wind power and a telescopic reefing mechanism for folding it during berthing.The stability of the ship has been verified through the calculations of initial stability,static stability,and dynamic stability through the fulfillment of the weather criterion using MAXSURF software.The structural analysis of the sail was carried out in ANSYS static structural module.Several flow simulations were carried out in ANSYS fluent module to predict the thrusts produced by the sails at different apparent wind angles,which would in turn reduce the thrust required from the propeller.In this way,the brake horse powers required for different sail arrangements were analyzed to find out a guideline for this wind propulsion system to generate better powering performances.To consider drift and yaw effect on propulsion system,an MMG mathematical model–based simulation was carried out for different drift angles of motion of the ship considering hard sail–based wind loads.Through these analyses,it has been found out that the hard sail–based wind-assisted propulsion system in some cases have produced a reduction of more than 30%brake power in straight ahead motion and around 20%reduction in case of drifting ships compared to the model having no sails.