This paper puts forward a new method to solve the electromagnetic parabolic equation (EMPE) by taking the vertically-layered inhomogeneous characteristics of the atmospheric refractive index into account. First, the...This paper puts forward a new method to solve the electromagnetic parabolic equation (EMPE) by taking the vertically-layered inhomogeneous characteristics of the atmospheric refractive index into account. First, the Fourier transform and the convo- lution theorem are employed, and the second-order partial differential equation, i.e., the EMPE, in the height space is transformed into first-order constant coefficient differential equations in the frequency space. Then, by use of the lower triangular characteristics of the coefficient matrix, the numerical solutions are designed. Through constructing ana- lytical solutions to the EMPE, the feasibility of the new method is validated. Finally, the numerical solutions to the new method are compared with those of the commonly used split-step Fourier algorithm.展开更多
基金supported by the National Natural Science Foundation of China(Nos.41175025 and41275113)
文摘This paper puts forward a new method to solve the electromagnetic parabolic equation (EMPE) by taking the vertically-layered inhomogeneous characteristics of the atmospheric refractive index into account. First, the Fourier transform and the convo- lution theorem are employed, and the second-order partial differential equation, i.e., the EMPE, in the height space is transformed into first-order constant coefficient differential equations in the frequency space. Then, by use of the lower triangular characteristics of the coefficient matrix, the numerical solutions are designed. Through constructing ana- lytical solutions to the EMPE, the feasibility of the new method is validated. Finally, the numerical solutions to the new method are compared with those of the commonly used split-step Fourier algorithm.