1 Major achievements of IGCP 661 The IGCP661 project"Processes,Cycle,and Sustainability of the Critical Zone in Karst Systems(2017-2021)"has been carried out for two years.Besides five International karst me...1 Major achievements of IGCP 661 The IGCP661 project"Processes,Cycle,and Sustainability of the Critical Zone in Karst Systems(2017-2021)"has been carried out for two years.Besides five International karst meetings and two training courses for karst that have been held,some scientific achievements include the basic roles of the function and structural evolution of the karst critical zone have been determined.In various types of karst critical zone,the different forms of calcite and HCO3-cycling were determined.展开更多
Identifying state transition and determining the critical value of the Duffing oscillator are crucial to indicating external signal existence and have a great influence on detection accuracy in weak signal detection. ...Identifying state transition and determining the critical value of the Duffing oscillator are crucial to indicating external signal existence and have a great influence on detection accuracy in weak signal detection. A circular zone counting (CZC) method is proposed in this paper, by combining the Duffing oscillator's phase trajectory feature and numerical calculation for quickly and accurately identifying state transition and determining the critical value, to realize a high- efficiency weak signal detection. Detailed model analysis and method construction of the CZC method are introduced. Numerical experiments into the reliability of the proposed CZC method compared with the maximum Lyapunov exponent (MLE) method are carried out. The CZC method is demonstrated to have better detecting ability than the MLE method, and furthermore it is simpler and clearer in calculation to extend to engineering application.展开更多
Soil degradation, including rocky desertification,of the karst regions in China is severe. Karst landscapes are especially sensitive to soil degradation as carbonate rocks are nutrient-poor and easily eroded. Understa...Soil degradation, including rocky desertification,of the karst regions in China is severe. Karst landscapes are especially sensitive to soil degradation as carbonate rocks are nutrient-poor and easily eroded. Understanding the balance between soil formation and soil erosion is critical for long-term soil sustainability, yet little is known about the initial soil forming processes on karst terrain. Herein we examine the initial weathering processes of several types of carbonate bedrock containing varying amounts of non-carbonate minerals in the SPECTRA Critical Zone Observatory, Guizhou Province, Southwest China. We compared the weathering mechanisms of the bedrock to the mass transfer of mineral nutrients in a soil profile developed on these rocks and found that soil formation and nutrient contents are strongly dependent upon the weathering of interbedded layers of more silicate-rich bedrock(marls). Atmospheric inputs from dust were also detected.展开更多
The near-surface environment of the Tibetan Plateau is a fragile critical zone. Our understanding of the transport and transformation of persistent organic pollutants(POPs) in the ecosystem has significantly improved ...The near-surface environment of the Tibetan Plateau is a fragile critical zone. Our understanding of the transport and transformation of persistent organic pollutants(POPs) in the ecosystem has significantly improved with research conducted in recent decades. In the current study,POP concentrations in soils logarithmically decreased and fractionated with increasing distance from the source area,patterns attributed to air–soil exchange. Transport from soils resulted in the enrichment of POP concentrations in plants and sediments. The enantiomeric fraction indicated that transformation of POPs in soils was significantly correlated with altitude. At the same time, the chiral signature of POPs in soils was maintained from soils to sediments, while the chiral transformation from soils to plants was found to be complex.展开更多
Focusing on sustainability of water resources and ecology in the complex karst critical zone, we illustrated functions of the hydro-geochemical analysis on hydrology from the aspects of connection and interaction amon...Focusing on sustainability of water resources and ecology in the complex karst critical zone, we illustrated functions of the hydro-geochemical analysis on hydrology from the aspects of connection and interaction among hydrology–vegetation–soils/rock fractures along the karst subsurface profile. We reviewed isotopic and geochemical interpretations on tracing water sources for plant uptake, quantifying watershed outlet flow composition and residence times, and evaluating long-term evolution among climate–landscape–hydrology in the karst critical zone. In this paper, the application of the hydro-geochemical analysis on the above aspects in the karst areas of southwest China was summarized.展开更多
Geochemical differentiation of soils has a series of consequences on plant and places pressure on the ecological environment.The quantitative evaluation of element migration in the Earth’s critical zone is a challeng...Geochemical differentiation of soils has a series of consequences on plant and places pressure on the ecological environment.The quantitative evaluation of element migration in the Earth’s critical zone is a challenging task.In this study,two demonstration study areas of Scutellaria baicalensis Georgi were selected,and multiple chemical weathering indexes,chemical loss fraction,mass migration coefficients and biological enrichment coefficient method were used to assess the ecological and geochemical suitability.The results show that for the element of Fe,Zn,Se,Cu,Co,Ni,Mo and Ge,the degree of weathering and soil maturation,were greater in the rhyolitic tuff area than in the Plagioclase gneiss area.In both research sites,the heavy metal level of samples in Scutellaria baicalensis Georgi did not exceed the standard limits.The plagioclase gneiss region’s surface soil environment was more alkaline,and the content of soil organic matter was lower,resulting in a higher bioenrichment intensity of Ge,Co,Cu,and Se elements in Scutellaria baicalensis Georgi than in the rhyolite-tuff area.The elements of Cd,Nb,Mo,Pb and As are considerably enriched in the soil of the plagioclase gneiss area but lost by leaching in the soil of the rhyolite tuff area,which is connected to the interplay of elemental abundance and human impact in the parent materials.This study provides a good example of how to assess growth suitability of Chinese medicinal materials in the Earth’s critical zone.展开更多
再生器是溶液除湿系统中的关键部件之一,提高再生器综合性能是解决极端热湿气候区高湿问题的有效手段。将指标相关法(CRITIC,Criteria Importance Through Intercriteria Correlation)和优劣解距离法(TOPSIS,Technique for Order Prefer...再生器是溶液除湿系统中的关键部件之一,提高再生器综合性能是解决极端热湿气候区高湿问题的有效手段。将指标相关法(CRITIC,Criteria Importance Through Intercriteria Correlation)和优劣解距离法(TOPSIS,Technique for Order Preference by Similarity to Ideal Solution)联合,建立CRITIC-TOPSIS模型,用于再生器运行入口参数(空气质量流量、溶液质量流量、温度)的选择评价。以永暑岛礁地区为例,通过再生器处理模型得到基础数据以及4个指标的评价体系,采用CRITIC法求得权重后使用TOPSIS法对220种运行入口参数的组合方案进行评价得到最优解。结果表明,空气质量流量为0.1 kg/s、溶液质量流量为0.3 kg/s、溶液温度为56℃时得分0.885,为永暑地区再生器综合性能最优解;再生量指标的权重为0.4,可作为永暑地区再生器综合性能的代表性指标。展开更多
The American Science journal,on the occasion of its 125 publication anniversary,in 2016,released 125 of the most challenging scientific issues(Kennedy et al.,2005)to the world.According to the basics,breadth and the i...The American Science journal,on the occasion of its 125 publication anniversary,in 2016,released 125 of the most challenging scientific issues(Kennedy et al.,2005)to the world.According to the basics,breadth and the influence,25 of the issues which considered to be the most important were screened,including"How many people can the Earth carry?"(Stokstad,2005;Dailyg et al.,1992;Cohen,1995)and"How high will the greenhouse effect make the earth temperature?展开更多
When waves propagate from deep water to shallow water, wave heights and steepness increase and then waves roll back and break. This phenomenon is called surf. Currently, the present statistical calculation model of su...When waves propagate from deep water to shallow water, wave heights and steepness increase and then waves roll back and break. This phenomenon is called surf. Currently, the present statistical calculation model of surf was derived mainly from the wave energy conservation equation and the linear wave dispersion relation, but it cannot reflect accurately the process which is a rapid increasing in wave height near the broken point. So, the concept of a surf breaking critical zone is presented. And the nearshore is divided as deep water zone, shallow water zone, surf breaking critical zone and after breaking zone. Besides, the calculation formula for the height of the surf breaking critical zone has founded based on flume experiments, thereby a new statistical calculation model on the surf has been established. Using the new model, the calculation error of wave height maximum is reduced from 17.62% to 6.43%.展开更多
One of the greatest challenges in critical zone studies is to document the moisture dynamics, water flux,and solute chemistry of the unsaturated, fractured and weathered bedrock that lies between the soil and groundwa...One of the greatest challenges in critical zone studies is to document the moisture dynamics, water flux,and solute chemistry of the unsaturated, fractured and weathered bedrock that lies between the soil and groundwater table. The central impediment to quantifying this component of the subsurface is the difficulty associated with direct observations. Here, we report solute chemistry as a function of depth collected over a full year across the shale-derived vadose zone of the Eel River Critical Zone Observatory using a set of novel sub-horizontal wellbores,referred to as the vadose zone monitoring system. The results of this first geochemical glimpse into the deep vadose zone indicate a dynamic temporal and depth-resolved structure. Major cation concentrations reflect seasonal changes in precipitation and water saturation, and normalized ratios span the full range of values reported for the world's largest rivers.展开更多
Bedrock weathering performs a significant influence on the evolution of Earth’s critical zone.Carbonate rock(dolostone),metamorphic rock(gneiss),and sedimentary rock(sandstone)geological formations in Yanshan Mountai...Bedrock weathering performs a significant influence on the evolution of Earth’s critical zone.Carbonate rock(dolostone),metamorphic rock(gneiss),and sedimentary rock(sandstone)geological formations in Yanshan Mountain,Hebei Province,are taken as objects to probe the controlling of geological formations on weathering characteristics,migration,and enrichment of elements as well as structure of Earth’s critical zone under the identical climate conditions through geological field survey,analysis on minerals component,element distribution in the weathering profile.The dolostone geological formation(DGF)is lithologically dominated by dolostone,characterized by the strongest and predominant chemical weathering.During bedrock weathering and pedogenesis,DGF is marked by significant depletion of CaO,Mg O,S,Mn,Mo and enrichment of N,K,Fe_(2)O_(3),and Zn with concentrations of P,Cu,and B keeping stable.Shortage of soil-forming materials and significant loss are driven by soil erosion,which results in thin regolith and soil.The soil thickness is less than 10 cm,and the regolith thickness is less than 30 cm.The vegetation community is predominantly rock arbor or brush,which is calcivorous and tolerant of barrenness.Plagiogneiss is a dominant rock type of gneiss geological formation(GGF),characterized by the weakest weathering and fast chemical and physical weathering rate.GGF is masked by significant depletion of P,K,CaO,MgO,Fe_(2)O_(3),Mn,Cu and enrichment of N,S,Mo,and B,with contents of Zn keeping stable.Both soil and regolith developed in GGF are relatively thick for one of the reasons that biotite expands during weathering.The soil thickness is more than 50 cm,and the regolith thickness ranges from 100 to 200 cm.The vegetation community is predominantly high-quality economic forests and various arbors because of the enrichment of nutrients in GGF.Sandstone is primarily a rock type of sandstone geological formation(SGF),characterized by moderate weathering degree and slow chemical weathering rate.SGF is marked by significant depletion of P,K,CaO,MgO,Fe_(2)O_(3),and enrichment of N,S,Mn,Cu,Zn,and Mo,with fluctuant changes of Zn and B.The thickness of soil developed in SGF varies between that of DGF and GGF.The soil thickness ranges from 30 to 50 cm,and the regolith thickness ranges from 50 to 100 cm.Chinese pines are widely spread on the shady slopes of SGF.Research provides theoretical support for screening dominant ecological resource areas,ecological industry development and ecological protection and restoration for Yanshan Mountain,Hebei Province.展开更多
Wetland is a transition zone between terrestrial and aquatic ecosystems,and is the source and sink of various biogenic elements in the earth’s epipelagic zone.In order to investigate the driving force and coupling me...Wetland is a transition zone between terrestrial and aquatic ecosystems,and is the source and sink of various biogenic elements in the earth’s epipelagic zone.In order to investigate the driving force and coupling mechanism of carbon(C),nitrogen(N)and phosphorus(P)migration in the critical zone of lake wetland,this paper studies the natural wetland of Dongting Lake area,through measuring and analysing the C,N and P contents in the wetland soil and groundwater.Methods of Pearson correlation,non-linear regression and machine learning were employed to analyse the influencing factors,and to explore the coupling patterns of the C,N and P in both soils and groundwater,with data derived from soil and water samples collected from the wetland critical zone.The results show that the mean values of organic carbon(TOC),total nitrogen(TN)and total phosphorus(TP)in groundwater are 1.59 mg/L,4.19 mg/L and 0.5 mg/L,respectively,while the mean values of C,N and P in the soils are 18.05 g/kg,0.86 g/kg and 0.52 g/kg.The results also show that the TOC,TN and TP in the groundwater are driven by a variety of environmental factors.However,the concentrations of C,N and P in the soils are mainly related to vegetation abundance and species which influence each other.In addition,the fitted curves of wetland soil C-N and C-P appear to follow the power function and S-shaped curve,respectively.In order to establish a multivariate regression model,the soil N and P contents were used as the input parameters and the soil C content used as the output one.By comparing the prediction effects of machine learning and nonlinear regression modelling,the results show that coupled relationship equation for the C,N and P contents is highly reliable.Future modelling of the coupled soil and groundwater elemental cycles needs to consider the complexity of hydrogeological conditions and to explore the quantitative relationships among the influencing factors and chemical constituents.展开更多
As mining depth becomes deeper and deeper,the possibility of undermining overburden aquifers is increasing.It is very important for coal miners to undertake studies on the height of fractured zone during longwall mini...As mining depth becomes deeper and deeper,the possibility of undermining overburden aquifers is increasing.It is very important for coal miners to undertake studies on the height of fractured zone during longwall mining and the effects of longwall mining on the underground water while mining under surface water bodies and underground aquifers.In order to study this problem,piezometers for monitoring underground water levels were installed above the longwall panels in an American coalmine.Large amounts of pre-mining,during mining and post-mining monitoring data were collected.Based on the data,the heights of fractured zones were obtained and the effects of longwall mining on the underground water were studied.The results demonstrate that when the piezometer monitoring wells had an interburden thickness of less than 72.7 m,the groundwater level decreased immediately to immeasurable levels and the wells went dry after undermining the face of longwall.The height of the fractured zone is 72.7-85.3 m in the geological and mining conditions.The results also show that the calculated values of fractured zones by the empirical formulae used in China are smaller than the actual results.Therefore,it is not always safe to use them for analyses while mining under water bodies.展开更多
Phosphorus(P)is an essential element for agricultural production.Over-fertilization during decades caused an accumulation of P in soils leading to eutrophication in regions characterized by intensive agriculture.These...Phosphorus(P)is an essential element for agricultural production.Over-fertilization during decades caused an accumulation of P in soils leading to eutrophication in regions characterized by intensive agriculture.These environmental concerns together with the non-renewability of P resources have led to a more sustainable P use.Knowledge about the P need of crops is essential for a sustainable agriculture thereby minimizing P losses to the environment without lowering the yield substantially.Therefore,in this study,critical soil P values for yield reduction(PCrit)were determined based on fertilizer trials conducted between 1970 and 1988 and more recent fertilizer trials(2016-2017).At rotational level a common PCrit value of 109 mg P/kg dry soil(in an ammonium lactate and acetate extract)was determined.Crop specific PCrit values were also determined for seven crops(potato,winter wheat,barley,rye,maize,sugar beet and temporary grassland).These critical values ranged from 59 mg P/kg dry soil to 164 mg P/kg dry soil with winter wheat the least and maize the most sensitive towards P deficiency.The diversity in PCrit values among crops can mainly be explained by the root intensity but also rooting depth,exudation of organic acids and phosphatases may influence the PCrit value.The soil pH also influenced the P availability significantly.Soils with a favorable pH had a significantly higher availability(i.e.,lower PCrit value)for all crops compared to soils with a suboptimal pH.Critical soil P values might help to set up new or to evaluate current soil P in target zones used for P fertilizer recommendations.展开更多
The ballastless track is nowadays the most popular railway system due to the required low number of maintenance opera-tions and costs,despite the high investment.The gradual change from ballasted to ballastless tracks...The ballastless track is nowadays the most popular railway system due to the required low number of maintenance opera-tions and costs,despite the high investment.The gradual change from ballasted to ballastless tracks has been occurring in Asia,but also in Europe,increasing the number of transition zones.The transition zones are a special area of the railway networks where there is an accelerated process of track degradation,which is a major concern of the railway infrastructure managers.Thus,the accurate prediction of the short-and long-term performance of ballastless tracks in transition zones is an important topic in the current paradigm of building/rehabilitating high-speed lines.This work purposes the development of an advanced 3D model to study the global performance of a ballastless track in an embankment-tunnel transition zone considering the influence of the train speed(220,360,500,and 600 km/h).Moreover,a mitigation measure is also adopted to reduce the stress and displacements levels of the track in the transition.A resilient mat placed in the tunnel and embank-ment aims to soften the transition.The behaviour of the track with the resilient mat is evaluated considering the influence of the train speed,with special attention regarding the critical speed.The used methodology is a novel and hybrid approach that allows including short-term and long-term performance,through the development of a powerful 3D model combined with the implementation of a calibrated empirical permanent deformation model.展开更多
土壤-表层岩溶带厚度是喀斯特地球关键带的关键指标,明确其空间异质性特征对于理解地球关键带结构演化机理以及评估水源涵养功能具有重要意义。在广西环江木连小流域1.4 km 2范围内,通过高密度电法(ERT)探测45条样线,共获取1731个样点...土壤-表层岩溶带厚度是喀斯特地球关键带的关键指标,明确其空间异质性特征对于理解地球关键带结构演化机理以及评估水源涵养功能具有重要意义。在广西环江木连小流域1.4 km 2范围内,通过高密度电法(ERT)探测45条样线,共获取1731个样点的土壤-表层岩溶带厚度及环境因子数据资料,研究了土壤和表层岩溶带厚度的空间分布格局及其影响因素。结果表明,土壤和表层岩溶带厚度平均值分别为1.15 m和6.44 m,且分别呈现强变异程度和中等变异程度。地统计分析结果表明球状模型和指数模型分别可以反映土壤和表层岩溶带的空间结构特征。土壤厚度呈现中等空间自相关性,变程长,空间连续性好;而表层岩溶带呈现强烈的空间自相关性,变程短,空间依赖性强。土壤厚度受到环境因子(地形湿度指数、垂直曲率、曲率、坡向、坡度、高程、覆盖度、出露基岩率和植被归一化指数)的多重影响,而表层岩溶带厚度受部分环境因子影响的同时,与土壤厚度和植被类型的相关性更高。研究结果有助于喀斯特区土壤-表层岩溶带演化机理认识,并为土壤-表层岩溶带厚度的空间预测提供科学依据。展开更多
基金granted by the International Earth Science Program of UNESCO(IGCP661)Research Fund of Chinese Academy of Geological Science(Grant No.YYWF201725)the Key Project of the National Natural Science Foundation of China(Grant No.41571203).
文摘1 Major achievements of IGCP 661 The IGCP661 project"Processes,Cycle,and Sustainability of the Critical Zone in Karst Systems(2017-2021)"has been carried out for two years.Besides five International karst meetings and two training courses for karst that have been held,some scientific achievements include the basic roles of the function and structural evolution of the karst critical zone have been determined.In various types of karst critical zone,the different forms of calcite and HCO3-cycling were determined.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61172047 and 61071025)
文摘Identifying state transition and determining the critical value of the Duffing oscillator are crucial to indicating external signal existence and have a great influence on detection accuracy in weak signal detection. A circular zone counting (CZC) method is proposed in this paper, by combining the Duffing oscillator's phase trajectory feature and numerical calculation for quickly and accurately identifying state transition and determining the critical value, to realize a high- efficiency weak signal detection. Detailed model analysis and method construction of the CZC method are introduced. Numerical experiments into the reliability of the proposed CZC method compared with the maximum Lyapunov exponent (MLE) method are carried out. The CZC method is demonstrated to have better detecting ability than the MLE method, and furthermore it is simpler and clearer in calculation to extend to engineering application.
基金supported by the National Environmental Research Council of the UK(Grant Nos.NE/N007530/1 and NE/N007603/1)the National Science Foundation of China(Grant No.41571130042)
文摘Soil degradation, including rocky desertification,of the karst regions in China is severe. Karst landscapes are especially sensitive to soil degradation as carbonate rocks are nutrient-poor and easily eroded. Understanding the balance between soil formation and soil erosion is critical for long-term soil sustainability, yet little is known about the initial soil forming processes on karst terrain. Herein we examine the initial weathering processes of several types of carbonate bedrock containing varying amounts of non-carbonate minerals in the SPECTRA Critical Zone Observatory, Guizhou Province, Southwest China. We compared the weathering mechanisms of the bedrock to the mass transfer of mineral nutrients in a soil profile developed on these rocks and found that soil formation and nutrient contents are strongly dependent upon the weathering of interbedded layers of more silicate-rich bedrock(marls). Atmospheric inputs from dust were also detected.
基金financially supported by the Fundamental Research Funds for the Central Universities(2652014003,2652016073)State Key Laboratory of Biogeology and Environmental Geology(GBL2135,GBL21405)
文摘The near-surface environment of the Tibetan Plateau is a fragile critical zone. Our understanding of the transport and transformation of persistent organic pollutants(POPs) in the ecosystem has significantly improved with research conducted in recent decades. In the current study,POP concentrations in soils logarithmically decreased and fractionated with increasing distance from the source area,patterns attributed to air–soil exchange. Transport from soils resulted in the enrichment of POP concentrations in plants and sediments. The enantiomeric fraction indicated that transformation of POPs in soils was significantly correlated with altitude. At the same time, the chiral signature of POPs in soils was maintained from soils to sediments, while the chiral transformation from soils to plants was found to be complex.
基金supported by the National Natural Scientific Foundation of China(No.41571130071)
文摘Focusing on sustainability of water resources and ecology in the complex karst critical zone, we illustrated functions of the hydro-geochemical analysis on hydrology from the aspects of connection and interaction among hydrology–vegetation–soils/rock fractures along the karst subsurface profile. We reviewed isotopic and geochemical interpretations on tracing water sources for plant uptake, quantifying watershed outlet flow composition and residence times, and evaluating long-term evolution among climate–landscape–hydrology in the karst critical zone. In this paper, the application of the hydro-geochemical analysis on the above aspects in the karst areas of southwest China was summarized.
基金funded by the China Geological Survey,grant number DD20190822。
文摘Geochemical differentiation of soils has a series of consequences on plant and places pressure on the ecological environment.The quantitative evaluation of element migration in the Earth’s critical zone is a challenging task.In this study,two demonstration study areas of Scutellaria baicalensis Georgi were selected,and multiple chemical weathering indexes,chemical loss fraction,mass migration coefficients and biological enrichment coefficient method were used to assess the ecological and geochemical suitability.The results show that for the element of Fe,Zn,Se,Cu,Co,Ni,Mo and Ge,the degree of weathering and soil maturation,were greater in the rhyolitic tuff area than in the Plagioclase gneiss area.In both research sites,the heavy metal level of samples in Scutellaria baicalensis Georgi did not exceed the standard limits.The plagioclase gneiss region’s surface soil environment was more alkaline,and the content of soil organic matter was lower,resulting in a higher bioenrichment intensity of Ge,Co,Cu,and Se elements in Scutellaria baicalensis Georgi than in the rhyolite-tuff area.The elements of Cd,Nb,Mo,Pb and As are considerably enriched in the soil of the plagioclase gneiss area but lost by leaching in the soil of the rhyolite tuff area,which is connected to the interplay of elemental abundance and human impact in the parent materials.This study provides a good example of how to assess growth suitability of Chinese medicinal materials in the Earth’s critical zone.
文摘再生器是溶液除湿系统中的关键部件之一,提高再生器综合性能是解决极端热湿气候区高湿问题的有效手段。将指标相关法(CRITIC,Criteria Importance Through Intercriteria Correlation)和优劣解距离法(TOPSIS,Technique for Order Preference by Similarity to Ideal Solution)联合,建立CRITIC-TOPSIS模型,用于再生器运行入口参数(空气质量流量、溶液质量流量、温度)的选择评价。以永暑岛礁地区为例,通过再生器处理模型得到基础数据以及4个指标的评价体系,采用CRITIC法求得权重后使用TOPSIS法对220种运行入口参数的组合方案进行评价得到最优解。结果表明,空气质量流量为0.1 kg/s、溶液质量流量为0.3 kg/s、溶液温度为56℃时得分0.885,为永暑地区再生器综合性能最优解;再生量指标的权重为0.4,可作为永暑地区再生器综合性能的代表性指标。
基金granted by the United Nations Educational,Scientific and Cultural Organization program(IGCP665)the China basic geological Investigation Program(Grant No.DD20160316).
文摘The American Science journal,on the occasion of its 125 publication anniversary,in 2016,released 125 of the most challenging scientific issues(Kennedy et al.,2005)to the world.According to the basics,breadth and the influence,25 of the issues which considered to be the most important were screened,including"How many people can the Earth carry?"(Stokstad,2005;Dailyg et al.,1992;Cohen,1995)and"How high will the greenhouse effect make the earth temperature?
基金The National Natural Science Foundation of China under contract Nos 41076048 and 40906044
文摘When waves propagate from deep water to shallow water, wave heights and steepness increase and then waves roll back and break. This phenomenon is called surf. Currently, the present statistical calculation model of surf was derived mainly from the wave energy conservation equation and the linear wave dispersion relation, but it cannot reflect accurately the process which is a rapid increasing in wave height near the broken point. So, the concept of a surf breaking critical zone is presented. And the nearshore is divided as deep water zone, shallow water zone, surf breaking critical zone and after breaking zone. Besides, the calculation formula for the height of the surf breaking critical zone has founded based on flume experiments, thereby a new statistical calculation model on the surf has been established. Using the new model, the calculation error of wave height maximum is reduced from 17.62% to 6.43%.
基金supported by the US National Science Foundation,Project EAR-1331904 for the Eel River Critical Zone Observatory
文摘One of the greatest challenges in critical zone studies is to document the moisture dynamics, water flux,and solute chemistry of the unsaturated, fractured and weathered bedrock that lies between the soil and groundwater table. The central impediment to quantifying this component of the subsurface is the difficulty associated with direct observations. Here, we report solute chemistry as a function of depth collected over a full year across the shale-derived vadose zone of the Eel River Critical Zone Observatory using a set of novel sub-horizontal wellbores,referred to as the vadose zone monitoring system. The results of this first geochemical glimpse into the deep vadose zone indicate a dynamic temporal and depth-resolved structure. Major cation concentrations reflect seasonal changes in precipitation and water saturation, and normalized ratios span the full range of values reported for the world's largest rivers.
基金Research Program of Tianjin North China Geological Exploration BureauHK2021-B15,Daqing Fu+4 种基金Geological Survey Program of China Geological SurveyMinistry of Natural ResourcesDD20190822,Xiaofeng WeiS&T Program of Hebei(CN),19224205DHao Wei。
文摘Bedrock weathering performs a significant influence on the evolution of Earth’s critical zone.Carbonate rock(dolostone),metamorphic rock(gneiss),and sedimentary rock(sandstone)geological formations in Yanshan Mountain,Hebei Province,are taken as objects to probe the controlling of geological formations on weathering characteristics,migration,and enrichment of elements as well as structure of Earth’s critical zone under the identical climate conditions through geological field survey,analysis on minerals component,element distribution in the weathering profile.The dolostone geological formation(DGF)is lithologically dominated by dolostone,characterized by the strongest and predominant chemical weathering.During bedrock weathering and pedogenesis,DGF is marked by significant depletion of CaO,Mg O,S,Mn,Mo and enrichment of N,K,Fe_(2)O_(3),and Zn with concentrations of P,Cu,and B keeping stable.Shortage of soil-forming materials and significant loss are driven by soil erosion,which results in thin regolith and soil.The soil thickness is less than 10 cm,and the regolith thickness is less than 30 cm.The vegetation community is predominantly rock arbor or brush,which is calcivorous and tolerant of barrenness.Plagiogneiss is a dominant rock type of gneiss geological formation(GGF),characterized by the weakest weathering and fast chemical and physical weathering rate.GGF is masked by significant depletion of P,K,CaO,MgO,Fe_(2)O_(3),Mn,Cu and enrichment of N,S,Mo,and B,with contents of Zn keeping stable.Both soil and regolith developed in GGF are relatively thick for one of the reasons that biotite expands during weathering.The soil thickness is more than 50 cm,and the regolith thickness ranges from 100 to 200 cm.The vegetation community is predominantly high-quality economic forests and various arbors because of the enrichment of nutrients in GGF.Sandstone is primarily a rock type of sandstone geological formation(SGF),characterized by moderate weathering degree and slow chemical weathering rate.SGF is marked by significant depletion of P,K,CaO,MgO,Fe_(2)O_(3),and enrichment of N,S,Mn,Cu,Zn,and Mo,with fluctuant changes of Zn and B.The thickness of soil developed in SGF varies between that of DGF and GGF.The soil thickness ranges from 30 to 50 cm,and the regolith thickness ranges from 50 to 100 cm.Chinese pines are widely spread on the shady slopes of SGF.Research provides theoretical support for screening dominant ecological resource areas,ecological industry development and ecological protection and restoration for Yanshan Mountain,Hebei Province.
基金supported by National Natural Science Foundation of China(No.42077176,No.41976057)Natural Science Foundation of Shanghai(No.20ZR1459700).
文摘Wetland is a transition zone between terrestrial and aquatic ecosystems,and is the source and sink of various biogenic elements in the earth’s epipelagic zone.In order to investigate the driving force and coupling mechanism of carbon(C),nitrogen(N)and phosphorus(P)migration in the critical zone of lake wetland,this paper studies the natural wetland of Dongting Lake area,through measuring and analysing the C,N and P contents in the wetland soil and groundwater.Methods of Pearson correlation,non-linear regression and machine learning were employed to analyse the influencing factors,and to explore the coupling patterns of the C,N and P in both soils and groundwater,with data derived from soil and water samples collected from the wetland critical zone.The results show that the mean values of organic carbon(TOC),total nitrogen(TN)and total phosphorus(TP)in groundwater are 1.59 mg/L,4.19 mg/L and 0.5 mg/L,respectively,while the mean values of C,N and P in the soils are 18.05 g/kg,0.86 g/kg and 0.52 g/kg.The results also show that the TOC,TN and TP in the groundwater are driven by a variety of environmental factors.However,the concentrations of C,N and P in the soils are mainly related to vegetation abundance and species which influence each other.In addition,the fitted curves of wetland soil C-N and C-P appear to follow the power function and S-shaped curve,respectively.In order to establish a multivariate regression model,the soil N and P contents were used as the input parameters and the soil C content used as the output one.By comparing the prediction effects of machine learning and nonlinear regression modelling,the results show that coupled relationship equation for the C,N and P contents is highly reliable.Future modelling of the coupled soil and groundwater elemental cycles needs to consider the complexity of hydrogeological conditions and to explore the quantitative relationships among the influencing factors and chemical constituents.
基金sponsored by the National Natural Science Foundation of China (No.50974053)Pennsylvania Service Corporation at Waynesburg,USA
文摘As mining depth becomes deeper and deeper,the possibility of undermining overburden aquifers is increasing.It is very important for coal miners to undertake studies on the height of fractured zone during longwall mining and the effects of longwall mining on the underground water while mining under surface water bodies and underground aquifers.In order to study this problem,piezometers for monitoring underground water levels were installed above the longwall panels in an American coalmine.Large amounts of pre-mining,during mining and post-mining monitoring data were collected.Based on the data,the heights of fractured zones were obtained and the effects of longwall mining on the underground water were studied.The results demonstrate that when the piezometer monitoring wells had an interburden thickness of less than 72.7 m,the groundwater level decreased immediately to immeasurable levels and the wells went dry after undermining the face of longwall.The height of the fractured zone is 72.7-85.3 m in the geological and mining conditions.The results also show that the calculated values of fractured zones by the empirical formulae used in China are smaller than the actual results.Therefore,it is not always safe to use them for analyses while mining under water bodies.
基金The field trials of 2016 and 2017 were financed by Flemish Land Agency(project APLM/2014/3).
文摘Phosphorus(P)is an essential element for agricultural production.Over-fertilization during decades caused an accumulation of P in soils leading to eutrophication in regions characterized by intensive agriculture.These environmental concerns together with the non-renewability of P resources have led to a more sustainable P use.Knowledge about the P need of crops is essential for a sustainable agriculture thereby minimizing P losses to the environment without lowering the yield substantially.Therefore,in this study,critical soil P values for yield reduction(PCrit)were determined based on fertilizer trials conducted between 1970 and 1988 and more recent fertilizer trials(2016-2017).At rotational level a common PCrit value of 109 mg P/kg dry soil(in an ammonium lactate and acetate extract)was determined.Crop specific PCrit values were also determined for seven crops(potato,winter wheat,barley,rye,maize,sugar beet and temporary grassland).These critical values ranged from 59 mg P/kg dry soil to 164 mg P/kg dry soil with winter wheat the least and maize the most sensitive towards P deficiency.The diversity in PCrit values among crops can mainly be explained by the root intensity but also rooting depth,exudation of organic acids and phosphatases may influence the PCrit value.The soil pH also influenced the P availability significantly.Soils with a favorable pH had a significantly higher availability(i.e.,lower PCrit value)for all crops compared to soils with a suboptimal pH.Critical soil P values might help to set up new or to evaluate current soil P in target zones used for P fertilizer recommendations.
基金financed by FCT/MCTES through national funds (PIDDAC) under the R&D Unit Institute for Sustainability and Innovation in Structural Engineering (ISISE), under reference UIDB/04029/2020 financially supported by: Base Funding-UIDB/04708/2020 of the CONSTRUCT-Institute of R&D in Structures and Construction-national funds through the FCT/ MCTES (PIDDAC)
文摘The ballastless track is nowadays the most popular railway system due to the required low number of maintenance opera-tions and costs,despite the high investment.The gradual change from ballasted to ballastless tracks has been occurring in Asia,but also in Europe,increasing the number of transition zones.The transition zones are a special area of the railway networks where there is an accelerated process of track degradation,which is a major concern of the railway infrastructure managers.Thus,the accurate prediction of the short-and long-term performance of ballastless tracks in transition zones is an important topic in the current paradigm of building/rehabilitating high-speed lines.This work purposes the development of an advanced 3D model to study the global performance of a ballastless track in an embankment-tunnel transition zone considering the influence of the train speed(220,360,500,and 600 km/h).Moreover,a mitigation measure is also adopted to reduce the stress and displacements levels of the track in the transition.A resilient mat placed in the tunnel and embank-ment aims to soften the transition.The behaviour of the track with the resilient mat is evaluated considering the influence of the train speed,with special attention regarding the critical speed.The used methodology is a novel and hybrid approach that allows including short-term and long-term performance,through the development of a powerful 3D model combined with the implementation of a calibrated empirical permanent deformation model.
文摘土壤-表层岩溶带厚度是喀斯特地球关键带的关键指标,明确其空间异质性特征对于理解地球关键带结构演化机理以及评估水源涵养功能具有重要意义。在广西环江木连小流域1.4 km 2范围内,通过高密度电法(ERT)探测45条样线,共获取1731个样点的土壤-表层岩溶带厚度及环境因子数据资料,研究了土壤和表层岩溶带厚度的空间分布格局及其影响因素。结果表明,土壤和表层岩溶带厚度平均值分别为1.15 m和6.44 m,且分别呈现强变异程度和中等变异程度。地统计分析结果表明球状模型和指数模型分别可以反映土壤和表层岩溶带的空间结构特征。土壤厚度呈现中等空间自相关性,变程长,空间连续性好;而表层岩溶带呈现强烈的空间自相关性,变程短,空间依赖性强。土壤厚度受到环境因子(地形湿度指数、垂直曲率、曲率、坡向、坡度、高程、覆盖度、出露基岩率和植被归一化指数)的多重影响,而表层岩溶带厚度受部分环境因子影响的同时,与土壤厚度和植被类型的相关性更高。研究结果有助于喀斯特区土壤-表层岩溶带演化机理认识,并为土壤-表层岩溶带厚度的空间预测提供科学依据。