One of the key issues for parallel mechanism is the kinematic characteristics,especially the workspace which varies with configuration parameters.A kind of 4UPS-UPU parallel mechanism is designed and its workspace is ...One of the key issues for parallel mechanism is the kinematic characteristics,especially the workspace which varies with configuration parameters.A kind of 4UPS-UPU parallel mechanism is designed and its workspace is studied in this paper.First,the mobility of the 4UPS-UPU parallel mechanism is analyzed based on the reciprocal screw theory,and the motion and constraint screw systems of the parallel mechanism are obtained.Then the inverse kinematics is derived by the closed-form kinematics chain.The boundary search method in the polar coordinate system is presented to analyze the constant-orientation workspace of the parallel mechanism.Finally,the influence factors relevant to the workspace,such as the structural parameters and kinematics parameters are analyzed in detail.The relationship between the workspace volume and different parameters are obtained.The conclusions can be used for parameters optimization and path planning of the parallel mechanism.展开更多
This paper presents a five degree of freedom(5-DOF)redundantly actuated parallel mechanism(PM)for the parallel machining head of a machine tool.A 5-DOF single kinematic chain is evolved into a secondary kinematic chai...This paper presents a five degree of freedom(5-DOF)redundantly actuated parallel mechanism(PM)for the parallel machining head of a machine tool.A 5-DOF single kinematic chain is evolved into a secondary kinematic chain based on Lie group theory and a configuration evolution method.The evolutional chain and four 6-DOF kinematic chain SPS(S represents spherical joint and P represents prismatic joint)or UPS(U represents universal joint)can be combined into four classes of 5-DOF redundantly actuated parallel mechanisms.That SPS-(2UPR)R(R represents revolute joint)redundantly actuated parallel mechanism is selected and is applied to the parallel machining head of the machine tool.All formulas of the 4SPS-(2UPR)R mechanism are deduced.The dynamic model of the mechanism is shown to be correct by Matlab and automatic dynamic analysis of mechanical systems(ADAMS)under no-load conditions.The dynamic performance evaluation indexes including energy transmission efficiency and acceleration performance evaluation are analyzed.The results show that the 4SPS-(2UPR)R mechanism can be applied to a parallel machining head and have good dynamic performance.展开更多
基金Supported by the National High Technology Research and Development Programme of China(No.SS2012AA041604)
文摘One of the key issues for parallel mechanism is the kinematic characteristics,especially the workspace which varies with configuration parameters.A kind of 4UPS-UPU parallel mechanism is designed and its workspace is studied in this paper.First,the mobility of the 4UPS-UPU parallel mechanism is analyzed based on the reciprocal screw theory,and the motion and constraint screw systems of the parallel mechanism are obtained.Then the inverse kinematics is derived by the closed-form kinematics chain.The boundary search method in the polar coordinate system is presented to analyze the constant-orientation workspace of the parallel mechanism.Finally,the influence factors relevant to the workspace,such as the structural parameters and kinematics parameters are analyzed in detail.The relationship between the workspace volume and different parameters are obtained.The conclusions can be used for parameters optimization and path planning of the parallel mechanism.
基金the Fundamental Research Funds for the Central Universities(No.2018 JBZ007).
文摘This paper presents a five degree of freedom(5-DOF)redundantly actuated parallel mechanism(PM)for the parallel machining head of a machine tool.A 5-DOF single kinematic chain is evolved into a secondary kinematic chain based on Lie group theory and a configuration evolution method.The evolutional chain and four 6-DOF kinematic chain SPS(S represents spherical joint and P represents prismatic joint)or UPS(U represents universal joint)can be combined into four classes of 5-DOF redundantly actuated parallel mechanisms.That SPS-(2UPR)R(R represents revolute joint)redundantly actuated parallel mechanism is selected and is applied to the parallel machining head of the machine tool.All formulas of the 4SPS-(2UPR)R mechanism are deduced.The dynamic model of the mechanism is shown to be correct by Matlab and automatic dynamic analysis of mechanical systems(ADAMS)under no-load conditions.The dynamic performance evaluation indexes including energy transmission efficiency and acceleration performance evaluation are analyzed.The results show that the 4SPS-(2UPR)R mechanism can be applied to a parallel machining head and have good dynamic performance.