This paper proposes a channel allocation scheme for multimedia wireless networks,in which a twolayer macro-cell or micro-cell architecture is considered.Macro-cells are used to access high-mobility services;while micr...This paper proposes a channel allocation scheme for multimedia wireless networks,in which a twolayer macro-cell or micro-cell architecture is considered.Macro-cells are used to access high-mobility services;while micro-cells,which are overlaid by the macro-cells,are used to cater low-mobility services.To analyze the scheme,a multidimensional Markov traffic model is firstly developed,in which traffic characteristic of two special periods of time is considered.And then,a pre-emptive channel-borrowing scheme combined with trafficoverflowing strategy for multimedia(voice,video or data) networks is proposed,in which handoff requests can not only borrow channels from adjacent homogenous cells,but also be overflowed to heterogeneous cells.Priority strategies are also dedicated to high-mobility services for they can pre-empt channels being used by low-mobility services in macro-cells.To meet the high quality of service(QoS) requirements of video services and increase the channel utilization ratio,video services can be transformed between real-time services and non-real-time services as necessary.Simulation results show that our schemes can decrease the blocking probabilities and improve the channel utilization.展开更多
A channel allocation scheme for hierarchical wireless networks was proposed in terms of the connection-level quality of service. The channel allocation scheme was analyzed using both horizontal channel borrowing and v...A channel allocation scheme for hierarchical wireless networks was proposed in terms of the connection-level quality of service. The channel allocation scheme was analyzed using both horizontal channel borrowing and vertical traffic overflowing. Pre-emptive priority strategies are used to classify real-time services and non-real-time services, real-time service is given higher priority for it is allowed to pre-empt channels used by non-real-time service. Some channel borrowing thresholds and acceptance ratios are used to avoid channel locking or dynamic power control, which can also be dynamically adjusted according to network load. Simulation results show that the proposed schemes can improve the system performance.展开更多
基金the National Natural Science Foundation of China (No.60802058)the Leading Academic Discipline Project of Shanghai Municipal Education Commission (No.J51801)
文摘This paper proposes a channel allocation scheme for multimedia wireless networks,in which a twolayer macro-cell or micro-cell architecture is considered.Macro-cells are used to access high-mobility services;while micro-cells,which are overlaid by the macro-cells,are used to cater low-mobility services.To analyze the scheme,a multidimensional Markov traffic model is firstly developed,in which traffic characteristic of two special periods of time is considered.And then,a pre-emptive channel-borrowing scheme combined with trafficoverflowing strategy for multimedia(voice,video or data) networks is proposed,in which handoff requests can not only borrow channels from adjacent homogenous cells,but also be overflowed to heterogeneous cells.Priority strategies are also dedicated to high-mobility services for they can pre-empt channels being used by low-mobility services in macro-cells.To meet the high quality of service(QoS) requirements of video services and increase the channel utilization ratio,video services can be transformed between real-time services and non-real-time services as necessary.Simulation results show that our schemes can decrease the blocking probabilities and improve the channel utilization.
基金The National Natural Science Foundation of China (No. 60372076)
文摘A channel allocation scheme for hierarchical wireless networks was proposed in terms of the connection-level quality of service. The channel allocation scheme was analyzed using both horizontal channel borrowing and vertical traffic overflowing. Pre-emptive priority strategies are used to classify real-time services and non-real-time services, real-time service is given higher priority for it is allowed to pre-empt channels used by non-real-time service. Some channel borrowing thresholds and acceptance ratios are used to avoid channel locking or dynamic power control, which can also be dynamically adjusted according to network load. Simulation results show that the proposed schemes can improve the system performance.