A model based damage identification was proposed by facilitating parameter sensitivity analysis and applied to a general overhead travelling crane.As updating reference data,experimental modal frequency was obtained b...A model based damage identification was proposed by facilitating parameter sensitivity analysis and applied to a general overhead travelling crane.As updating reference data,experimental modal frequency was obtained by operational modal analysis(OMA)under ambient excitation.One dimensional damage function was defined to identify the damage by bending stiffness.The results showed that the model updating method could locate the damage and quantitatively describe the structure.The average error of eigenvalues between updated model analysis and the experimental results was less than 4% which proved the accuracy reliable.The comparison of finite element analysis and the test results of the deflection under the capacity load further verified the feasibility of this method.展开更多
This paper presents a case study on the repair of a mechanical component of an overhead crane.The problem was initially identified through on-site inspection and analysis of the crane’s performance.The mechanical par...This paper presents a case study on the repair of a mechanical component of an overhead crane.The problem was initially identified through on-site inspection and analysis of the crane’s performance.The mechanical part was found damaged,leading to safety concerns and operational inefficiencies.The paper details the process of diagnosing the issue,developing a repair plan,and executing the repair work.The repair plan involved replacing the damaged component with a new one and conducting additional maintenance work to ensure optimal performance.The paper also discusses the outcomes of the repair work,which led to improved safety and increased efficiency of the overhead crane.The case study provides insights into the importance of regular maintenance and on-site inspections in ensuring the safe and efficient operation of mechanical systems.展开更多
基金supported by the Research Program of General Administration of Quality Supervision,Inspec-tion and Quarantine of the People's Republic of China(AQSIQ)(No.2014QK182)the Key Laboratory of Risk Identification and Structural Damage Detection Technology for Large Cranes of Jiangsu Province,Donghua Testing Technology Co.,Ltd
文摘A model based damage identification was proposed by facilitating parameter sensitivity analysis and applied to a general overhead travelling crane.As updating reference data,experimental modal frequency was obtained by operational modal analysis(OMA)under ambient excitation.One dimensional damage function was defined to identify the damage by bending stiffness.The results showed that the model updating method could locate the damage and quantitatively describe the structure.The average error of eigenvalues between updated model analysis and the experimental results was less than 4% which proved the accuracy reliable.The comparison of finite element analysis and the test results of the deflection under the capacity load further verified the feasibility of this method.
文摘This paper presents a case study on the repair of a mechanical component of an overhead crane.The problem was initially identified through on-site inspection and analysis of the crane’s performance.The mechanical part was found damaged,leading to safety concerns and operational inefficiencies.The paper details the process of diagnosing the issue,developing a repair plan,and executing the repair work.The repair plan involved replacing the damaged component with a new one and conducting additional maintenance work to ensure optimal performance.The paper also discusses the outcomes of the repair work,which led to improved safety and increased efficiency of the overhead crane.The case study provides insights into the importance of regular maintenance and on-site inspections in ensuring the safe and efficient operation of mechanical systems.