Multi-terminal direct current(MTDC)grids provide the possibility of meshed interconnections between regional power systems and various renewable energy resources to boost supply reliability and economy.The modular mul...Multi-terminal direct current(MTDC)grids provide the possibility of meshed interconnections between regional power systems and various renewable energy resources to boost supply reliability and economy.The modular multilevel converter(MMC)has become the basic building block for MTDC and DC grids due to its salient features,i.e.,modularity and scalability.Therefore,the MMC-based MTDC systems should be pervasively embedded into the present power system to improve system performance.However,several technical challenges hamper their practical applications and deployment,including modeling,control,and protection of the MMC-MTDC grids.This paper presents a comprehensive investigation and reference in modeling,control,and protection of the MMC-MTDC grids.A general overview of state-of-the-art modeling techniques of the MMC along with their performance in simulation analysis for MTDC applications is provided.A review of control strategies of the MMC-MTDC grids which provide AC system support is presented.State-of-the art protection techniques of the MMCMTDC systems are also investigated.Finally,the associated research challenges and trends are highlighted.展开更多
模块化多电平换流器型直流输电系统(modular multilevel converter based high voltage direct current,MMCHVDC)和交流线路可为重要负荷双路供电,因此MMCHVDC需具备在联网运行状态和孤岛运行状态间稳定转换的能力。该文分析了MMC在联...模块化多电平换流器型直流输电系统(modular multilevel converter based high voltage direct current,MMCHVDC)和交流线路可为重要负荷双路供电,因此MMCHVDC需具备在联网运行状态和孤岛运行状态间稳定转换的能力。该文分析了MMC在联网状态和孤岛状态间相互转换的过程,并设计了一种基于本地电气量的MMC控制模式切换策略。之后,对MMC无源供电控制器进行改进,设计了一种无需切换控制模式的MMC下垂控制策略。最后,通过PSCAD仿真对上述2种转换策略进行验证和比较,结果表明2种策略均能使MMC在联网状态和孤岛状态间稳定转换。2种策略各有优缺点,实际应用中MMC需依据具体的控制目标选取合适的策略。展开更多
首先介绍在远距离大容量输电场合,3种基于模块化多电平换流器(modular multilevel converter,MMC)的高压直流输电(high voltage direct current,HVDC)拓扑及其处理直流故障的方法:基于半桥子模块(half bridge sub-module,HBSM)的HMMC-H...首先介绍在远距离大容量输电场合,3种基于模块化多电平换流器(modular multilevel converter,MMC)的高压直流输电(high voltage direct current,HVDC)拓扑及其处理直流故障的方法:基于半桥子模块(half bridge sub-module,HBSM)的HMMC-HVDC跳换流站交流侧断路器,基于箝位双子模块(clamp double sub-module,CDSM)的CMMCHVDC通过换流器控制实现直流侧故障自清除,以及基于电网换相换流器(line commutated converter,LCC)和MMC的混合拓扑在MMC直流出口处加装大功率二极管(LCC-D-MMC-HVDC)。然后,在由MMC-HVDC和交流线路构成的交直流并列简化系统中,基于等面积法则,对上述3种直流故障处理方法的暂态过程进行理论分析,并提出评价指标。最后通过仿真验证了分析结果。展开更多
模块化多电平换流器高压直流输电(modular multilevel converter based high voltage direct current,MMC-HVDC)由于具备自换相能力,尤其适用于向弱交流电网供电。交流系统强度降低时,会制约系统的直流功率传输能力,甚至导致系统失稳。...模块化多电平换流器高压直流输电(modular multilevel converter based high voltage direct current,MMC-HVDC)由于具备自换相能力,尤其适用于向弱交流电网供电。交流系统强度降低时,会制约系统的直流功率传输能力,甚至导致系统失稳。针对联接弱交流电网时MMC-HVDC系统功率传输受限的问题,建立了状态空间与直流阻抗模型,从时域、频域两方面研究了交流系统强度对直流功率传输能力的影响,明确了弱交流电网工况下功率传输受限的原因。基于参与因子定位结果,提出了在定直流电压控制环节引入直流电流反馈的功率传输能力提升方法,从时域、频域两方面对控制策略的提升作用进行了机理分析,并定量得出了控制参数的可行域及功率传输能力的最大提升水平。该方法在避免稳态误差的前提下,有效提升了MMC-HVDC系统的直流功率传输能力。展开更多
随着模块化多电平换流器直流输电(modular multilevel converter based HVDC,MMC-HVDC)的快速发展,远距离大容量架空线直流输电系统随之出现。相比于电缆线路,架空线输电易发生短路、闪络等瞬时故障,必须采取相应措施限制故障电流,避免...随着模块化多电平换流器直流输电(modular multilevel converter based HVDC,MMC-HVDC)的快速发展,远距离大容量架空线直流输电系统随之出现。相比于电缆线路,架空线输电易发生短路、闪络等瞬时故障,必须采取相应措施限制故障电流,避免系统停运。针对架空线真双极MMC-HVDC系统,分别从交流系统和换流阀的角度分析架空线路单极接地故障的等值电路模型和故障特性,推导故障电流的解析表达式。提出了一种新型故障限流模块,可有效抑制闭锁后短路电流幅值。依靠该限流模块的限流能力,设计了换流站快速重启策略。仿真结果证明,该限流方案可有效限制桥臂电流的大小及上升速率,消除系统交流侧及换流器内部续流二极管的过流危害,减小直流断路器的动作难度,加速故障极换流站重启,减少系统停运时间。展开更多
为解决基于模块化多电平换流器(modular multilevel converter,MMC)的柔性直流输电(high voltage direct current,HVDC)故障电流解析计算精度不足的问题,提出一种计及远端站影响的多端MMC-HVDC故障电流改进时域求解法。首先,在分析故障...为解决基于模块化多电平换流器(modular multilevel converter,MMC)的柔性直流输电(high voltage direct current,HVDC)故障电流解析计算精度不足的问题,提出一种计及远端站影响的多端MMC-HVDC故障电流改进时域求解法。首先,在分析故障后子模块电容放电路径的基础上,推导换流站等效电容值等系统参数,建立MMC-HVDC系统故障后网络等效模型。其次,将直流电网各换流站解耦,以故障后各支路电流近似解为初值,逐次修正计及远端站影响的多端MMC-HVDC线路等效电阻及等效电感,得到多端MMC-HVDC系统中各支路的故障电流值。最后,基于RT-LAB仿真平台搭建四端柔性直流电网模型,对故障电流计算值与详细电磁暂态仿真结果进行对比。结果表明,所提故障电流求解方法能够准确、有效地计算出多端MMC-HVDC短路故障后各支路电流值,最大误差小于5%。展开更多
采用架空线柔性直流输电技术进行远距离输电是大规模风电场友好型并网的有效手段。针对架空线路易发生故障的问题,采用对称双极主接线并配置直流断路器是其主要解决方案之一。该文基于双极接线方案运行方式灵活及直流断路器的故障清除能...采用架空线柔性直流输电技术进行远距离输电是大规模风电场友好型并网的有效手段。针对架空线路易发生故障的问题,采用对称双极主接线并配置直流断路器是其主要解决方案之一。该文基于双极接线方案运行方式灵活及直流断路器的故障清除能力,提出风电经架空线基于模块化多电平换流器的柔性直流输电(modular multilevel converter based high voltage direct current,MMC-HVDC)并网的直流故障穿越协调控制策略。根据非故障极的功率转带能力,将故障清除后的不平衡功率分配划分为自消纳情景和非自消纳情景。针对自消纳情景,通过合理切换双极MMC的控制模式,可在提高非故障极功率转带能力的同时自主消纳不平衡功率,进而有效降低转移功率的影响范围;针对非自消纳情景,设计考虑风机转速约束的风电场超速减载协调控制策略,优化分配各风电机组承担的减载功率,充分利用其转子动能和捕获风功率的变化实现精确减载;同时通过控制模式切换使非故障极MMC自主运行于满载状态,减小单极退出运行对受端交流系统的影响。最后,基于Matlab/Simulink仿真模型验证所提直流故障穿越协调控制策略的有效性。展开更多
如何对直流故障电流进行有效抑制是实现柔性直流电网大规模发展的关键。为此,研究模块化多电平变换器(modular multilevel converter,MMC)的控制方法,提出一种针对半桥型MMC的两段式限流保护策略,通过减少子模块的投入数目来降低换流站...如何对直流故障电流进行有效抑制是实现柔性直流电网大规模发展的关键。为此,研究模块化多电平变换器(modular multilevel converter,MMC)的控制方法,提出一种针对半桥型MMC的两段式限流保护策略,通过减少子模块的投入数目来降低换流站直流出口电压,达到限制短路电流的目的。首先,介绍MMC的拓扑结构及基于MMC的高压直流输电(MMC based high voltage direct current,MMC-HVDC)系统控制策略;其次,分析两段式限流保护策略的原理与直流故障电流特性,介绍MMC-HVDC系统的直流故障保护策略;最后,通过双端MMC-HVDC系统仿真实验,对所提限流保护策略的有效性进行验证。仿真结果表明,两段式限流保护策略可以有效降低断路器开断电流和吸收能量,节约成本。展开更多
Symmetrical monopolar configuration is the prevailing scheme configuration for modular multilevel converter based high-voltage direct current(MMC-HVDC) links, in which severe DC overvoltage or overcurrent can be cause...Symmetrical monopolar configuration is the prevailing scheme configuration for modular multilevel converter based high-voltage direct current(MMC-HVDC) links, in which severe DC overvoltage or overcurrent can be caused by the DC faults. To deal with the possible asymmetry in the DC faults and the coupling effects of the DC lines, this paper analyzes the DC fault characteristics based on the phase-mode transformation. First, the DC grid is decomposed into the common-mode and the differential-mode networks. The equivalent models of the MMCs and DC lines in the two networks are derived, respectively. Then, based on the state matrices, a unified numerical calculation method for the fault voltages and currents at the DC side is proposed. Compared with the time-domain simulations performed on PSCAD/EMTDC, the accuracy of the proposed method is validated. Last, the system parameter analysis shows that the grounding parameters play an important role in reducing the severity of the pole-to-ground faults, whereas the coupling effects of the DC lines should be considered when calculating the DC fault currents associated with the pole-to-pole faults.展开更多
Multi-terminal high voltage DC(MT-HVDC)grid has broad application prospects in connecting different energy sources,asynchronous interconnection of power grids,remote load power supply,and other fields.At present,the k...Multi-terminal high voltage DC(MT-HVDC)grid has broad application prospects in connecting different energy sources,asynchronous interconnection of power grids,remote load power supply,and other fields.At present,the key technologies that affect the development of MT-HVDC transmission system include swift fault identification and location in the DC line and its rapid isolation.Traditional fault monitoring relies on line communication,which cannot guarantee the rapidity and reliability of protection;moreover,it may even cause device damage.A fault identification scheme based on a single-terminal transient is presented in this paper.This scheme calculates the line inductance by using the rise rate of fault current at the initial stage of the fault,and determines the occurrence of the fault by comparing the observed line inductance with the set value,which lays a foundation for calculating the location of the fault point using distance protection.A simulation model on the PSCAD/EMTDC platform is built;the simulation example verifies that the proposed scheme can identify faults under dissimilar conditions while maintaining a low error level on the premise of no communication lines so as to meet the protection requirements of the MT-HVDC grid.展开更多
基金funded by SGCC Science and Technology Program under project Research on Electromagnetic Transient Simulation Technology for Large-scale MMC-HVDC Systems.
文摘Multi-terminal direct current(MTDC)grids provide the possibility of meshed interconnections between regional power systems and various renewable energy resources to boost supply reliability and economy.The modular multilevel converter(MMC)has become the basic building block for MTDC and DC grids due to its salient features,i.e.,modularity and scalability.Therefore,the MMC-based MTDC systems should be pervasively embedded into the present power system to improve system performance.However,several technical challenges hamper their practical applications and deployment,including modeling,control,and protection of the MMC-MTDC grids.This paper presents a comprehensive investigation and reference in modeling,control,and protection of the MMC-MTDC grids.A general overview of state-of-the-art modeling techniques of the MMC along with their performance in simulation analysis for MTDC applications is provided.A review of control strategies of the MMC-MTDC grids which provide AC system support is presented.State-of-the art protection techniques of the MMCMTDC systems are also investigated.Finally,the associated research challenges and trends are highlighted.
文摘模块化多电平换流器型直流输电系统(modular multilevel converter based high voltage direct current,MMCHVDC)和交流线路可为重要负荷双路供电,因此MMCHVDC需具备在联网运行状态和孤岛运行状态间稳定转换的能力。该文分析了MMC在联网状态和孤岛状态间相互转换的过程,并设计了一种基于本地电气量的MMC控制模式切换策略。之后,对MMC无源供电控制器进行改进,设计了一种无需切换控制模式的MMC下垂控制策略。最后,通过PSCAD仿真对上述2种转换策略进行验证和比较,结果表明2种策略均能使MMC在联网状态和孤岛状态间稳定转换。2种策略各有优缺点,实际应用中MMC需依据具体的控制目标选取合适的策略。
文摘模块化多电平换流器高压直流输电(modular multilevel converter based high voltage direct current,MMC-HVDC)由于具备自换相能力,尤其适用于向弱交流电网供电。交流系统强度降低时,会制约系统的直流功率传输能力,甚至导致系统失稳。针对联接弱交流电网时MMC-HVDC系统功率传输受限的问题,建立了状态空间与直流阻抗模型,从时域、频域两方面研究了交流系统强度对直流功率传输能力的影响,明确了弱交流电网工况下功率传输受限的原因。基于参与因子定位结果,提出了在定直流电压控制环节引入直流电流反馈的功率传输能力提升方法,从时域、频域两方面对控制策略的提升作用进行了机理分析,并定量得出了控制参数的可行域及功率传输能力的最大提升水平。该方法在避免稳态误差的前提下,有效提升了MMC-HVDC系统的直流功率传输能力。
文摘随着模块化多电平换流器直流输电(modular multilevel converter based HVDC,MMC-HVDC)的快速发展,远距离大容量架空线直流输电系统随之出现。相比于电缆线路,架空线输电易发生短路、闪络等瞬时故障,必须采取相应措施限制故障电流,避免系统停运。针对架空线真双极MMC-HVDC系统,分别从交流系统和换流阀的角度分析架空线路单极接地故障的等值电路模型和故障特性,推导故障电流的解析表达式。提出了一种新型故障限流模块,可有效抑制闭锁后短路电流幅值。依靠该限流模块的限流能力,设计了换流站快速重启策略。仿真结果证明,该限流方案可有效限制桥臂电流的大小及上升速率,消除系统交流侧及换流器内部续流二极管的过流危害,减小直流断路器的动作难度,加速故障极换流站重启,减少系统停运时间。
文摘为解决基于模块化多电平换流器(modular multilevel converter,MMC)的柔性直流输电(high voltage direct current,HVDC)故障电流解析计算精度不足的问题,提出一种计及远端站影响的多端MMC-HVDC故障电流改进时域求解法。首先,在分析故障后子模块电容放电路径的基础上,推导换流站等效电容值等系统参数,建立MMC-HVDC系统故障后网络等效模型。其次,将直流电网各换流站解耦,以故障后各支路电流近似解为初值,逐次修正计及远端站影响的多端MMC-HVDC线路等效电阻及等效电感,得到多端MMC-HVDC系统中各支路的故障电流值。最后,基于RT-LAB仿真平台搭建四端柔性直流电网模型,对故障电流计算值与详细电磁暂态仿真结果进行对比。结果表明,所提故障电流求解方法能够准确、有效地计算出多端MMC-HVDC短路故障后各支路电流值,最大误差小于5%。
文摘采用架空线柔性直流输电技术进行远距离输电是大规模风电场友好型并网的有效手段。针对架空线路易发生故障的问题,采用对称双极主接线并配置直流断路器是其主要解决方案之一。该文基于双极接线方案运行方式灵活及直流断路器的故障清除能力,提出风电经架空线基于模块化多电平换流器的柔性直流输电(modular multilevel converter based high voltage direct current,MMC-HVDC)并网的直流故障穿越协调控制策略。根据非故障极的功率转带能力,将故障清除后的不平衡功率分配划分为自消纳情景和非自消纳情景。针对自消纳情景,通过合理切换双极MMC的控制模式,可在提高非故障极功率转带能力的同时自主消纳不平衡功率,进而有效降低转移功率的影响范围;针对非自消纳情景,设计考虑风机转速约束的风电场超速减载协调控制策略,优化分配各风电机组承担的减载功率,充分利用其转子动能和捕获风功率的变化实现精确减载;同时通过控制模式切换使非故障极MMC自主运行于满载状态,减小单极退出运行对受端交流系统的影响。最后,基于Matlab/Simulink仿真模型验证所提直流故障穿越协调控制策略的有效性。
文摘如何对直流故障电流进行有效抑制是实现柔性直流电网大规模发展的关键。为此,研究模块化多电平变换器(modular multilevel converter,MMC)的控制方法,提出一种针对半桥型MMC的两段式限流保护策略,通过减少子模块的投入数目来降低换流站直流出口电压,达到限制短路电流的目的。首先,介绍MMC的拓扑结构及基于MMC的高压直流输电(MMC based high voltage direct current,MMC-HVDC)系统控制策略;其次,分析两段式限流保护策略的原理与直流故障电流特性,介绍MMC-HVDC系统的直流故障保护策略;最后,通过双端MMC-HVDC系统仿真实验,对所提限流保护策略的有效性进行验证。仿真结果表明,两段式限流保护策略可以有效降低断路器开断电流和吸收能量,节约成本。
文摘Symmetrical monopolar configuration is the prevailing scheme configuration for modular multilevel converter based high-voltage direct current(MMC-HVDC) links, in which severe DC overvoltage or overcurrent can be caused by the DC faults. To deal with the possible asymmetry in the DC faults and the coupling effects of the DC lines, this paper analyzes the DC fault characteristics based on the phase-mode transformation. First, the DC grid is decomposed into the common-mode and the differential-mode networks. The equivalent models of the MMCs and DC lines in the two networks are derived, respectively. Then, based on the state matrices, a unified numerical calculation method for the fault voltages and currents at the DC side is proposed. Compared with the time-domain simulations performed on PSCAD/EMTDC, the accuracy of the proposed method is validated. Last, the system parameter analysis shows that the grounding parameters play an important role in reducing the severity of the pole-to-ground faults, whereas the coupling effects of the DC lines should be considered when calculating the DC fault currents associated with the pole-to-pole faults.
基金Supported by the National Natural Science Foundation of China(51767014)the Scientific and Technological Research and Development Program of the China Railway(2017J010-C/2017).
文摘Multi-terminal high voltage DC(MT-HVDC)grid has broad application prospects in connecting different energy sources,asynchronous interconnection of power grids,remote load power supply,and other fields.At present,the key technologies that affect the development of MT-HVDC transmission system include swift fault identification and location in the DC line and its rapid isolation.Traditional fault monitoring relies on line communication,which cannot guarantee the rapidity and reliability of protection;moreover,it may even cause device damage.A fault identification scheme based on a single-terminal transient is presented in this paper.This scheme calculates the line inductance by using the rise rate of fault current at the initial stage of the fault,and determines the occurrence of the fault by comparing the observed line inductance with the set value,which lays a foundation for calculating the location of the fault point using distance protection.A simulation model on the PSCAD/EMTDC platform is built;the simulation example verifies that the proposed scheme can identify faults under dissimilar conditions while maintaining a low error level on the premise of no communication lines so as to meet the protection requirements of the MT-HVDC grid.