This paper presents an innovative eccentric jacket substructure for offshore wind turbines to better withstand intense environmental forces and to replace conventional X-braced jackets in seismically active areas. The...This paper presents an innovative eccentric jacket substructure for offshore wind turbines to better withstand intense environmental forces and to replace conventional X-braced jackets in seismically active areas. The proposed eccentric jacket comprises of completely overlapped joint at every joint connection. The joint consists of a chord and two braces in a single plane. The two braces are fully overlapped with a short segment of the diagonal brace welded directly onto the chord. The characteristic feature of this joint configuration is that the short segment member can be designed to absorb and dissipate energy under cyclic load excitation. The experimental and numerical study revealed that the completely overlapped joint performed better in terms of strength resistance, stiffness, ductility, and energy absorption capacity than the conventional gap joints commonly found in typical X-braced jacket framings. The eccentric jacket could also be designed to becoming less stiff, with an inelastic yielding and local buckling of short segment member, so as to better resist the cyclic load generated from intense environmental forces and earthquake. From the design economics, the eccentric jacket provided a more straightforward fabrication with reduced number of welded joints and shorter thicker wall cans than the conventional X-braced jacket. It can therefore be concluded based on the results presented in the study that by designing the short segment member in accordance with strength and ductility requirement,the eccentric jacket substructure supporting the wind turbine could be made to remain stable under gravity loads and to sustain a significantly large amount of motion in the event of rare and intense earthquake or environmental forces, without collapsing.展开更多
The reflection and transmission of Lamb waves at overlap joints are researched by the numerical method and the experiments. The numerical method is used to simulate the reflection and transmission of Lamb waves at wel...The reflection and transmission of Lamb waves at overlap joints are researched by the numerical method and the experiments. The numerical method is used to simulate the reflection and transmission of Lamb waves at welds with different widths on 2 mm-thick stainless steel plates. The reflection and transmission coefficients are calculated as well. When the welds width is less than 4 mm, a quasi-linear correlation is observed between the reflection coefficient of SO mode and the weld width. In contrast to the weld width, both the gap between two plates and the reinforcement height of weld do not have obvious effect on the reflection coefficient. Based on the results, we propose that the weld width could be rapidly measured through examining the echo amplitude of SO mode. Experiments further confirm the quasilinear correlation and the feasibility of our proposed method.展开更多
The effect of through-thickness reinforcement by composite pins (Z-pins) on the static tensile strength and failure mechanisms of the joints made from ceramic matrix composite (CMC) is investigated. Overlap length...The effect of through-thickness reinforcement by composite pins (Z-pins) on the static tensile strength and failure mechanisms of the joints made from ceramic matrix composite (CMC) is investigated. Overlap length of the single lap joint is 15 mm, 20 mm, 23 mm, 37 mm, and 60 mm, respectively. The experimental results indicate that the final failure modes of the joints can be divided into two groups, (a) the bond-line stops debonding until crack encounters Z-pins; and then the adherends break at the location of Z-pins, when overlap length is more than 20 mm; (b) the bond-line detaches entirely and Z-pins are drawn from adherends, when overlap length is equal to 15 mm. A simple efficient computational approach is presented for analyzing the benefit of through-thickness pins for restricting failure in the single lap joints. Here, the mechanics problem is simplified by representing the effect of the pins by tractions acting on the fracture surfaces of the cracked bond-line. The tractions are prescribed as functions of the crack displacement, which are available in simple forms that summarize the complex deformations to a reasonable accuracy. The resulting model can be used to track the evolution of complete failure mechanisms, for example, bond-line initial delamination and ultimate failure associated with Z-pin pullout, ultimate failure of the adherends. The paper simulates connecting performance of the single lap joints with different Z-pins' diameter, spacing and overlap length; the numerical results agree with the experimental results; the numerical results indicate enlarging diameter and decreasing spacing of Z-pins are in favor of improving the connecting performance of the joints. By numerical analysis method, the critical overlap length that lies between two final failure modes is between 18 mm and 19 mm, when Z-pins' diameter and spacing are 0.4 mm, 5 mm, respectively.展开更多
中文电子病历实体关系抽取是构建医疗知识图谱,服务下游子任务的重要基础。目前,中文电子病例进行实体关系抽取仍存在因医疗文本关系复杂、实体密度大而造成医疗名词识别不准确的问题。针对这一问题,提出了基于对抗学习与多特征融合的...中文电子病历实体关系抽取是构建医疗知识图谱,服务下游子任务的重要基础。目前,中文电子病例进行实体关系抽取仍存在因医疗文本关系复杂、实体密度大而造成医疗名词识别不准确的问题。针对这一问题,提出了基于对抗学习与多特征融合的中文电子病历实体关系联合抽取模型AMFRel(adversarial learning and multi-feature fusion for relation triple extraction),提取电子病历的文本和词性特征,得到融合词性信息的编码向量;利用编码向量联合对抗训练产生的扰动生成对抗样本,抽取句子主语;利用信息融合模块丰富文本结构特征,并根据特定的关系信息抽取出相应的宾语,得到医疗文本的三元组。采用CHIP2020关系抽取数据集和糖尿病数据集进行实验验证,结果显示:AMFRel在CHIP2020关系抽取数据集上的Precision为63.922%,Recall为57.279%,F1值为60.418%;在糖尿病数据集上的Precision、Recall和F1值分别为83.914%,67.021%和74.522%,证明了该模型的三元组抽取性能优于其他基线模型。展开更多
文摘This paper presents an innovative eccentric jacket substructure for offshore wind turbines to better withstand intense environmental forces and to replace conventional X-braced jackets in seismically active areas. The proposed eccentric jacket comprises of completely overlapped joint at every joint connection. The joint consists of a chord and two braces in a single plane. The two braces are fully overlapped with a short segment of the diagonal brace welded directly onto the chord. The characteristic feature of this joint configuration is that the short segment member can be designed to absorb and dissipate energy under cyclic load excitation. The experimental and numerical study revealed that the completely overlapped joint performed better in terms of strength resistance, stiffness, ductility, and energy absorption capacity than the conventional gap joints commonly found in typical X-braced jacket framings. The eccentric jacket could also be designed to becoming less stiff, with an inelastic yielding and local buckling of short segment member, so as to better resist the cyclic load generated from intense environmental forces and earthquake. From the design economics, the eccentric jacket provided a more straightforward fabrication with reduced number of welded joints and shorter thicker wall cans than the conventional X-braced jacket. It can therefore be concluded based on the results presented in the study that by designing the short segment member in accordance with strength and ductility requirement,the eccentric jacket substructure supporting the wind turbine could be made to remain stable under gravity loads and to sustain a significantly large amount of motion in the event of rare and intense earthquake or environmental forces, without collapsing.
基金supported by the National Natural Science Foundation of China(51705470)
文摘The reflection and transmission of Lamb waves at overlap joints are researched by the numerical method and the experiments. The numerical method is used to simulate the reflection and transmission of Lamb waves at welds with different widths on 2 mm-thick stainless steel plates. The reflection and transmission coefficients are calculated as well. When the welds width is less than 4 mm, a quasi-linear correlation is observed between the reflection coefficient of SO mode and the weld width. In contrast to the weld width, both the gap between two plates and the reinforcement height of weld do not have obvious effect on the reflection coefficient. Based on the results, we propose that the weld width could be rapidly measured through examining the echo amplitude of SO mode. Experiments further confirm the quasilinear correlation and the feasibility of our proposed method.
基金supported by the National Natural Science Foundation of China (No. 90405015)the Research Fund forthe Doctoral Program of Higher Education (No. 20030699040).
文摘The effect of through-thickness reinforcement by composite pins (Z-pins) on the static tensile strength and failure mechanisms of the joints made from ceramic matrix composite (CMC) is investigated. Overlap length of the single lap joint is 15 mm, 20 mm, 23 mm, 37 mm, and 60 mm, respectively. The experimental results indicate that the final failure modes of the joints can be divided into two groups, (a) the bond-line stops debonding until crack encounters Z-pins; and then the adherends break at the location of Z-pins, when overlap length is more than 20 mm; (b) the bond-line detaches entirely and Z-pins are drawn from adherends, when overlap length is equal to 15 mm. A simple efficient computational approach is presented for analyzing the benefit of through-thickness pins for restricting failure in the single lap joints. Here, the mechanics problem is simplified by representing the effect of the pins by tractions acting on the fracture surfaces of the cracked bond-line. The tractions are prescribed as functions of the crack displacement, which are available in simple forms that summarize the complex deformations to a reasonable accuracy. The resulting model can be used to track the evolution of complete failure mechanisms, for example, bond-line initial delamination and ultimate failure associated with Z-pin pullout, ultimate failure of the adherends. The paper simulates connecting performance of the single lap joints with different Z-pins' diameter, spacing and overlap length; the numerical results agree with the experimental results; the numerical results indicate enlarging diameter and decreasing spacing of Z-pins are in favor of improving the connecting performance of the joints. By numerical analysis method, the critical overlap length that lies between two final failure modes is between 18 mm and 19 mm, when Z-pins' diameter and spacing are 0.4 mm, 5 mm, respectively.
文摘中文电子病历实体关系抽取是构建医疗知识图谱,服务下游子任务的重要基础。目前,中文电子病例进行实体关系抽取仍存在因医疗文本关系复杂、实体密度大而造成医疗名词识别不准确的问题。针对这一问题,提出了基于对抗学习与多特征融合的中文电子病历实体关系联合抽取模型AMFRel(adversarial learning and multi-feature fusion for relation triple extraction),提取电子病历的文本和词性特征,得到融合词性信息的编码向量;利用编码向量联合对抗训练产生的扰动生成对抗样本,抽取句子主语;利用信息融合模块丰富文本结构特征,并根据特定的关系信息抽取出相应的宾语,得到医疗文本的三元组。采用CHIP2020关系抽取数据集和糖尿病数据集进行实验验证,结果显示:AMFRel在CHIP2020关系抽取数据集上的Precision为63.922%,Recall为57.279%,F1值为60.418%;在糖尿病数据集上的Precision、Recall和F1值分别为83.914%,67.021%和74.522%,证明了该模型的三元组抽取性能优于其他基线模型。