This paper presents a novel architecture of combining the linear array of antenna elements, where each antenna element has digitally selectable true time-delays as weights. Use of time-delays for beam-formation inhere...This paper presents a novel architecture of combining the linear array of antenna elements, where each antenna element has digitally selectable true time-delays as weights. Use of time-delays for beam-formation inherently makes the phased array network a wideband system. In particular, this technique envisage a new method of sharing antenna elements, by fixed overlapped sub-array architecture, which is able to maintain permissible element spacing to avoid grating lobe in antenna pattern. Moreover, this scheme additionally offers an easier null steering capability to the subarray architecture. This method essentially eliminates the need for intensive computation of complex weight vectors attached to each antenna element.展开更多
文摘This paper presents a novel architecture of combining the linear array of antenna elements, where each antenna element has digitally selectable true time-delays as weights. Use of time-delays for beam-formation inherently makes the phased array network a wideband system. In particular, this technique envisage a new method of sharing antenna elements, by fixed overlapped sub-array architecture, which is able to maintain permissible element spacing to avoid grating lobe in antenna pattern. Moreover, this scheme additionally offers an easier null steering capability to the subarray architecture. This method essentially eliminates the need for intensive computation of complex weight vectors attached to each antenna element.