The high and large span cast-in-place reinforced concrete cantilever structure of the office building of some court, which is located I-steel at the cantilever and used steel pipe scaffold as the support, has guarante...The high and large span cast-in-place reinforced concrete cantilever structure of the office building of some court, which is located I-steel at the cantilever and used steel pipe scaffold as the support, has guaranteed the frame body and structure security by the frame body calculating, on-site test and reasonable construction order.展开更多
A reliability-based quantitative durability design methodology is presented for reinforced concrete(RC)structures in the marine environment on the basis of natural exposure data derived from four berths(1.5,1.5,4 and ...A reliability-based quantitative durability design methodology is presented for reinforced concrete(RC)structures in the marine environment on the basis of natural exposure data derived from four berths(1.5,1.5,4 and 15 years)of a concrete port.More than 200 chloride profiles are obtained and analyzed.The relationship between nominal surface chloride ion concentration and altitude is discussed.Subsequently,the formula of the apparent chloride diffusion coefficient is proposed with consideration of the surrounding temperature,sodium chloride solution concentration,age factor and altitude.Then,the reliability-based method to predict the durability of RC structures is developed according to Fick s second law.Relationships between the predicted penetration depth of the chloride ion,the ratio of the wetting time per-period and the corresponding altitude are discussed.Subsequently,the environmental zonation methodology is established for concrete structures under a marine chloride environment by considering the ratio of the wetting time per-period of concrete as the zoning index.Finally,the corres-ponding durability design method for each zone level is established,which contains the durability design regulations of the specimen,and correction coefficients for different water/binder ratios,ages,temperatures and chloride ion concentrations.展开更多
Based on the existing research, this paper presents an innovative methodology to realize direct damage-based seismic design for RC frame structures by mobilizing ESDOF theory and the damage-based strength reduction fa...Based on the existing research, this paper presents an innovative methodology to realize direct damage-based seismic design for RC frame structures by mobilizing ESDOF theory and the damage-based strength reduction factor(RD factor). A design example is then followed to verify this method.展开更多
The aim of our study is to reveal the effect of steel reinforcement details,tensile steel reinforcement ratio,compressed reinforcing steel ratio,reinforcing steel size,corner joint shape on the strength of reinforced ...The aim of our study is to reveal the effect of steel reinforcement details,tensile steel reinforcement ratio,compressed reinforcing steel ratio,reinforcing steel size,corner joint shape on the strength of reinforced concrete Fc'and delve into it for the most accurate details and concrete connections about the behavior and resistance of the corner joint of reinforced concrete,Depending on the available studies and sources in addition to our study,we concluded that each of these effects had a clear role in the behavior and resistance of the corner joint of reinforced concrete under the influence of the negative moment and yield stress.A study of the types of faults that can be reinforced angle joints obtains details and conditions of crushing that are almost identical for all types of steel reinforcement details and the basic requirements for the acceptable behavior of reinforced concrete joints in the installations and the efficiency of the joint and this may help us to prepare for disasters,whether natural or other,as happens with tremors The floor and failure that may occur due to wrong designs or old buildings and the possibility of using those connections to treat those joints and sections in reinforced or unarmed concrete facilities to preserve the safety of humans and buildings from sudden disasters and reduce and reduce risks,as well as qualitative control over the production of concrete connections and sections free from defects to the extreme.展开更多
The main concern of this paper is to provide an extensive study for the structural behavior of low/medium/high rise office buildings aiming to deepen structure and architect designers understanding for such type of bu...The main concern of this paper is to provide an extensive study for the structural behavior of low/medium/high rise office buildings aiming to deepen structure and architect designers understanding for such type of buildings. The study is performed on reinforced concrete and emphasized only on Kuwait city conditions for wind. Regular layout plan building with different heights ranging from five to fifty typical office stories are investigated in this study. Three dimensional finite element techniques through ETABS software are used in conducting analysis for structures presented here-in. A serviceability study is performed to ensure that buildings have sufficient stability to limit lateral drift and peak acceleration within the acceptable range of occupancy comfort. In addition, an ultimate strength study is carried out to design and verify that all the structural elements are designed to withstand factored gravity and lateral loadings in a safe manner according to the international building codes. The building slenderness ratio and the building core size and location are the studied parameters since they are the key drivers for the efficient structural design. Analysis results are presented and discussed and finally conclusions are summarized as guidelines for designers of concrete office buildings in Kuwait.展开更多
In architecture,interlace structural concept is considered as a new design approach for cosmopolitan cities with high density to minimize the land use and increase the interaction.With various architectural approach,l...In architecture,interlace structural concept is considered as a new design approach for cosmopolitan cities with high density to minimize the land use and increase the interaction.With various architectural approach,land resources can be minimized by this interlace concept for residential complexes.Such buildings will eliminate the reduction of land resource problem and on the other side safety measures in structural design is incorporated by interlace concept of buildings.This new concept can be constructed steel or reinforced concrete.In this paper,an analytical approach has been presented for these buildings in architecture and structural design.In the research,design considerations were taken for interlaced structures with reinforced concrete and steel.Components of steel structure,isolated footing,and columns.This paper is presenting a step wise process for interlaced structures.They are identification of project area,layout and model preparation,analysis and design of concrete interlaced structure,analysis and design of steel interlaced structure,drafting of the plans and costing and estimation of the structures.Comparison of both reinforced concrete and steel structures were carried out.The main aim of the paper is to provide a comparison between steel and concrete interlaced structure.A cost estimation was carried out to determine optimum design and construction for interlaced structures.展开更多
文摘The high and large span cast-in-place reinforced concrete cantilever structure of the office building of some court, which is located I-steel at the cantilever and used steel pipe scaffold as the support, has guaranteed the frame body and structure security by the frame body calculating, on-site test and reasonable construction order.
基金The National Natural Science Foundation of China(No.51508162)
文摘A reliability-based quantitative durability design methodology is presented for reinforced concrete(RC)structures in the marine environment on the basis of natural exposure data derived from four berths(1.5,1.5,4 and 15 years)of a concrete port.More than 200 chloride profiles are obtained and analyzed.The relationship between nominal surface chloride ion concentration and altitude is discussed.Subsequently,the formula of the apparent chloride diffusion coefficient is proposed with consideration of the surrounding temperature,sodium chloride solution concentration,age factor and altitude.Then,the reliability-based method to predict the durability of RC structures is developed according to Fick s second law.Relationships between the predicted penetration depth of the chloride ion,the ratio of the wetting time per-period and the corresponding altitude are discussed.Subsequently,the environmental zonation methodology is established for concrete structures under a marine chloride environment by considering the ratio of the wetting time per-period of concrete as the zoning index.Finally,the corres-ponding durability design method for each zone level is established,which contains the durability design regulations of the specimen,and correction coefficients for different water/binder ratios,ages,temperatures and chloride ion concentrations.
文摘Based on the existing research, this paper presents an innovative methodology to realize direct damage-based seismic design for RC frame structures by mobilizing ESDOF theory and the damage-based strength reduction factor(RD factor). A design example is then followed to verify this method.
文摘The aim of our study is to reveal the effect of steel reinforcement details,tensile steel reinforcement ratio,compressed reinforcing steel ratio,reinforcing steel size,corner joint shape on the strength of reinforced concrete Fc'and delve into it for the most accurate details and concrete connections about the behavior and resistance of the corner joint of reinforced concrete,Depending on the available studies and sources in addition to our study,we concluded that each of these effects had a clear role in the behavior and resistance of the corner joint of reinforced concrete under the influence of the negative moment and yield stress.A study of the types of faults that can be reinforced angle joints obtains details and conditions of crushing that are almost identical for all types of steel reinforcement details and the basic requirements for the acceptable behavior of reinforced concrete joints in the installations and the efficiency of the joint and this may help us to prepare for disasters,whether natural or other,as happens with tremors The floor and failure that may occur due to wrong designs or old buildings and the possibility of using those connections to treat those joints and sections in reinforced or unarmed concrete facilities to preserve the safety of humans and buildings from sudden disasters and reduce and reduce risks,as well as qualitative control over the production of concrete connections and sections free from defects to the extreme.
文摘The main concern of this paper is to provide an extensive study for the structural behavior of low/medium/high rise office buildings aiming to deepen structure and architect designers understanding for such type of buildings. The study is performed on reinforced concrete and emphasized only on Kuwait city conditions for wind. Regular layout plan building with different heights ranging from five to fifty typical office stories are investigated in this study. Three dimensional finite element techniques through ETABS software are used in conducting analysis for structures presented here-in. A serviceability study is performed to ensure that buildings have sufficient stability to limit lateral drift and peak acceleration within the acceptable range of occupancy comfort. In addition, an ultimate strength study is carried out to design and verify that all the structural elements are designed to withstand factored gravity and lateral loadings in a safe manner according to the international building codes. The building slenderness ratio and the building core size and location are the studied parameters since they are the key drivers for the efficient structural design. Analysis results are presented and discussed and finally conclusions are summarized as guidelines for designers of concrete office buildings in Kuwait.
文摘In architecture,interlace structural concept is considered as a new design approach for cosmopolitan cities with high density to minimize the land use and increase the interaction.With various architectural approach,land resources can be minimized by this interlace concept for residential complexes.Such buildings will eliminate the reduction of land resource problem and on the other side safety measures in structural design is incorporated by interlace concept of buildings.This new concept can be constructed steel or reinforced concrete.In this paper,an analytical approach has been presented for these buildings in architecture and structural design.In the research,design considerations were taken for interlaced structures with reinforced concrete and steel.Components of steel structure,isolated footing,and columns.This paper is presenting a step wise process for interlaced structures.They are identification of project area,layout and model preparation,analysis and design of concrete interlaced structure,analysis and design of steel interlaced structure,drafting of the plans and costing and estimation of the structures.Comparison of both reinforced concrete and steel structures were carried out.The main aim of the paper is to provide a comparison between steel and concrete interlaced structure.A cost estimation was carried out to determine optimum design and construction for interlaced structures.