随着运营线路的增多,郑州地铁已进入网络化运营的新阶段,对设备的日常维护也提出了更高的要求,通信专业设备众多,更需要通过智能运维来满足网络化运营的新要求。本文基于车站、控制中心的通信设备的维护现状,通过研究通信专业智能化集...随着运营线路的增多,郑州地铁已进入网络化运营的新阶段,对设备的日常维护也提出了更高的要求,通信专业设备众多,更需要通过智能运维来满足网络化运营的新要求。本文基于车站、控制中心的通信设备的维护现状,通过研究通信专业智能化集中运维方式,优化日常运维场景、故障处理场景、抢险抢修场景下人员分工和生产方式,提出新的基于KVM OVER IP的设备管理架构和运维模式,在不影响现网正常稳定运行、投资成本不高的情况下,实现地铁通信专业设备的集中化、智能化维护,进一步提升设备管理维护水平,同时为下一步建设网管网奠定基石,最终可轻松实现业务、管理2张网运行,结合大数据技术亦可实现地铁通信设备的智能监测、智能分析、智能维护,最大化的增加经济效益。展开更多
Count data is almost always over-dispersed where the variance exceeds the mean. Several count data models have been proposed by researchers but the problem of over-dispersion still remains unresolved, more so in the c...Count data is almost always over-dispersed where the variance exceeds the mean. Several count data models have been proposed by researchers but the problem of over-dispersion still remains unresolved, more so in the context of change point analysis. This study develops a likelihood-based algorithm that detects and estimates multiple change points in a set of count data assumed to follow the Negative Binomial distribution. Discrete change point procedures discussed in literature work well for equi-dispersed data. The new algorithm produces reliable estimates of change points in cases of both equi-dispersed and over-dispersed count data;hence its advantage over other count data change point techniques. The Negative Binomial Multiple Change Point Algorithm was tested using simulated data for different sample sizes and varying positions of change. Changes in the distribution parameters were detected and estimated by conducting a likelihood ratio test on several partitions of data obtained through step-wise recursive binary segmentation. Critical values for the likelihood ratio test were developed and used to check for significance of the maximum likelihood estimates of the change points. The change point algorithm was found to work best for large datasets, though it also works well for small and medium-sized datasets with little to no error in the location of change points. The algorithm correctly detects changes when present and fails to detect changes when change is absent in actual sense. Power analysis of the likelihood ratio test for change was performed through Monte-Carlo simulation in the single change point setting. Sensitivity analysis of the test power showed that likelihood ratio test is the most powerful when the simulated change points are located mid-way through the sample data as opposed to when changes were located in the periphery. Further, the test is more powerful when the change was located three-quarter-way through the sample data compared to when the change point is closer (quarter-way) to the first observation.展开更多
Spatial structure of overlying strata existed and evolved dynamically with the exploitation scope (boundary conditions) changes in coal mines and to induce rockburst. Based on the“key strata”theory, the integrated...Spatial structure of overlying strata existed and evolved dynamically with the exploitation scope (boundary conditions) changes in coal mines and to induce rockburst. Based on the“key strata”theory, the integrated spatial structure of overlying strata was put forward, which was composed of “O-X” structure in the plane section and “F” structure in the vertical section. The formation and ongoing instability of the“O-X”and“F”structures were called as dynamic evolution cycle of the overlying strata. Three basic categories of “O-X”, “F” and “T” structures were defined, and the strata behaviors of each spatial structure were analyzed. According to energy theory, mechanism of rockburst induced by spatial structure instability was discussed. The research expanded the scope of traditional ground pressure theory and provided a guide for the prevention of rockburst and mining tremors induced by structure instability of overlying展开更多
[Objective]The research aimed to investigate the bioturbation effects of benthic fish Misgurnus anguillicaudatus on phosphorus dynamic in overlying water of paddy field,as well as to explore the bioturbation mechanism...[Objective]The research aimed to investigate the bioturbation effects of benthic fish Misgurnus anguillicaudatus on phosphorus dynamic in overlying water of paddy field,as well as to explore the bioturbation mechanism.[Method]Based on simulation experiment,the phosphorus contents in overlying water were analyzed comparatively with and without Misgurnus anguillicaudatus by the using of ion chromatography and spectrophotometry.[Result]The concentrations of total phosphorus(TP),dissolved total phosphorus(DTP)and particular phosphorus(PP)in bioturbation group had no significant differences with those in control group in initial stage of experiment,and became significantly higher than control group in middle and late stages of experiment(P<0.05). The PP/TP ratios in bioturbation group were bigger than those in control group,the increase of TP concentration in bioturbation group was mainly due to the increase of PP. The ratios of dissolved inorganic phosphorus(DIP) to DTP (DIP/DTP) were significantly bigger than those in control group in middle and late stages of experiment(P<0.05).[Conclusion]The benthic fish had bioturbation effects on phosphorus in overlying water of paddy field,which increased the available phosphorus for rice growth.展开更多
Mining-induced fracture zone will be produced in the overlying strata after the coal was mined.In this article,the mining-induced deformation of overlying strata and the time-space evolution law of fissure were studie...Mining-induced fracture zone will be produced in the overlying strata after the coal was mined.In this article,the mining-induced deformation of overlying strata and the time-space evolution law of fissure were studied by the methods of physical simulation and field measurement.The results show that bed separation fissure and vertical fissure will appear in the overlying strata above mining face,which form the wedge-shaped fissure zone.The open degree of fissure depends on the size of uncoordinated deformation between neighbor layers,and the absolute strata sinking controls both the width of bed separation zone and the open degree of vertical breakage fissure.At last,the calculating formula was deducted based on theoretical analysis.展开更多
The occurrence of overlying coal pillar(OCP)exerts a strong effect on the stress and strain distribution of the surrounding rock in the stope.In this paper,the stress distribution characteristics are analyzed via the ...The occurrence of overlying coal pillar(OCP)exerts a strong effect on the stress and strain distribution of the surrounding rock in the stope.In this paper,the stress distribution characteristics are analyzed via the numerical calculation with the account of OCP presence or absence.In addition,this study revealed the joint effect of side pressure relief area of the goaf and stress concentration in OCP on the final stress distribution.Furthermore,the rules of abutment stress distribution affected by three influencing factors,namely horizontal-vertical distances between OCP and working face and buried depth of OCP,are analyzed.The functional model linking the peak stress of surrounding rock with the above influencing factors is developed.The field application of the above results proved that the rib spalling and deformation of a 2.95 m-high and 5.66 m-wide roadway could be efficiently controlled by rationally adjusting working states of the support,and adopting the hydraulic prop coordinated with the p type metal beam and anchor cable to strengthen the surrounding rock of working face and roadway,respectively.The proposed measures are considered appropriate to satisfy the safe operation requirements.展开更多
Spudcan may experience punch-through failure on strong over weak layered soils, such as sand overlying clay. A large deformation finite element method (LDFE) is used to simulate the penetration process of spudcan in...Spudcan may experience punch-through failure on strong over weak layered soils, such as sand overlying clay. A large deformation finite element method (LDFE) is used to simulate the penetration process of spudcan into sand overlying clay. The sand is simulated by smoothed hyperbolic Mohr-Coulomb model, and the clay is simulated by a simple elasto-plastic model which obeys Tresca yield criterion. According to the LDFE results of a large amount of cases, the effects of the strength, unit weight and thickness of the top sand layer, as well as the effect of the strength of the underlying clay on the spudcan punch-through behavior, are investigated. The critical depth occurring punch-through and the critical bearing capacity are presented in charts. Fitting equations to calculate the critical punch-through depth and the critical bearing capacity are proposed for the convenience of engineering practice.展开更多
The height of fractured zone(HFZ) at the high-intensity longwall mining panel plays a vital role in the safety analysis of coal mining under bodies of water. This paper described definitions of the highintensity minin...The height of fractured zone(HFZ) at the high-intensity longwall mining panel plays a vital role in the safety analysis of coal mining under bodies of water. This paper described definitions of the highintensity mining. The processes of overburden failure transfer(OFT) were analyzed, which were divided into the development stage and the termination stage. Through theoretical analysis, the limited suspension-distance and the limited overhanging distance were proposed to judge the damage of each stratum. Mechanical models of strata suspended integrity and overhanging stability were established.A theoretical method to predict the HFZ at the high-intensity longwall mining panel was put forward based on the processes of OFT. Taking a high-intensity longwall mining panel(No. 11915 panel) as an example, the theoretical method proposed, the engineering analogy and the empirical formulas in the Regulation were used to predict the HFZ. The results show that the theoretical result is consistent with the engineering analogies' result and empirical formulas' result. The rationality and reliability of the theoretical method proposed is verified.展开更多
The changeable structure and movement law of overlying strata are the maincontributor to the change of mining stress.Starting from the relevant theory of keystratum and particularly based on the theory of mine ground ...The changeable structure and movement law of overlying strata are the maincontributor to the change of mining stress.Starting from the relevant theory of keystratum and particularly based on the theory of mine ground pressure and strata control,this research proposed a new solution to mining stress problems by establishing adual-load-zone stratum structural model.Elastic foundation beam theory was used tosolve the stress of overlying strata of the dual-load-zones with superposition method,which revised the traditional calculation method of mining stress.The abnormal increaseof lead abutment pressure in the mining area was explained effectively,through which theevolution law of mining stress in the case of hard rock was obtained.The results indicatethat mining stress experiences a drastic change within the range of 50 m ahead of the coalwall due to the collapse of main roof;under the influence of main key stratum andinferior key strata,the influence range of lead abutment pressure is extended up toapproximately 120 m in the working face;this remarkable increase can be attributed tothe excessive length of sagging zone.Results from both the dual-load-zone modelexperiment and field measurement demonstrate high consistency.The model can predictthe influence range of abutment pressure effectively and thus guide the safety productionof mining.展开更多
The rupture and movement scope of overlying strata upon the longwall mining face increased sharply as the exploitation scale and degree growing recently,and the spatial structure formed by fractured strata became much...The rupture and movement scope of overlying strata upon the longwall mining face increased sharply as the exploitation scale and degree growing recently,and the spatial structure formed by fractured strata became much more complex.The overlying strata above the working face and adjacent gobs would affect each other and move cooperatively because small pillar can hardly separate the connection of overlying strata between two workfaces,which leads to mining seismicity in the gob and induces rockburst disaster that named spatial structure instability rockburst in this paper.Based on the key stratum theory,the F-structure model was established to describe the overlying strata characteristic and rockburst mechanism of workface with one side of gob and the other side un-mined solid coal seam.The results show that F-structure in the gob will re-active and loss stability under the influence of neighboring mining,and fracture and shear slipping in the process of instability is the mechanism of the seismicity in the gob.The F-structure was divided into two categories that short-arm F and long-arm F structure based on the state of strata above the gob.We studied the underground pressure rules of different F-structure and instability mechanism,thus provide the guide for prevention and control of the F-structure spatial instability rockburst.The micro-seismic system is used for on-site monitoring and researching the distribution rules of seismic events,the results confrmed the existence and correct of F-spatial structure.At last specialized methods for prevention seismicity and rockburst induced by F-structure instability are proposed and applied in Huating Coal Mine.展开更多
The breaking features and stress distribution of overlying strata in a steeply dipping coal seam(SDCS)differ significantly from those in a near-horizontal one.In this study,the laws governing the evolution of vertical...The breaking features and stress distribution of overlying strata in a steeply dipping coal seam(SDCS)differ significantly from those in a near-horizontal one.In this study,the laws governing the evolution of vertical stress release and shear stress concentration in the overlying strata of coal seams with different dip angles are derived via numerical simulation,rock mechanics tests,acoustic emissions,and field measurements.Thus,the stress-driven dynamic evolution of the overlying strata structure,in which a shear stress arch forms,is determined.Upon breaking the lower pari of the overlying strata,the shear stress transfers rapidly to the upper part of the working face.The damaged zone of the overlying strata migrates upward along the dip direction of the working face.The gangue in the lower part of the working face is compacted,leading to an increase in vertical stress.As the dip angle of the coal seam increases,the overlying strata fail suddenly under the action of shear stresses.Finally,the behavioral response of the overlying strata driven by shear stresses in the longwall working face of an SDCS is identified and analyzed in detail.The present research findings reveal the laws governing the behavior of mine pressure in the working face of an SDCS,which in turn can be used to establish the respective on-site guidance.展开更多
Ascending mining is one of the most effective ways to solve problems of water inrush, gas outburst and rock burst in coal seams mining. In order to reveal the law of motion and spatiotemporal relationship of overlayin...Ascending mining is one of the most effective ways to solve problems of water inrush, gas outburst and rock burst in coal seams mining. In order to reveal the law of motion and spatiotemporal relationship of overlaying strata, field measurement has been done in a mine. Long distance drillings were constructed from 4# coal seam to 6# coal seam at several certain typical positions, and movement and failure law of overlying strata after mining was analyzed by drilling video and observing the fluid leakage. Besides, we also analyzed the spatiotemporal development law of overlying strata failure with different mining heights and time intervals in the lower coal seam. The results show that: ascending mining is significantly affected by time-domain characteristics of overlaying strata failure after the lower coal seam's mining, height equations of caving zone and fractured zone are given in this paper, and the feasibility of ascending mining was compartmentalized concretely according to the spatiotemporal relationship. Research methods and conclusions of this paper have certain referential significance for the study of ascending mining, mining under water, mining under building, mining under railway and stress-relief mining.展开更多
A 3-D soil-pipe nonlinear finite element model with contact element is suggested and the influences of the rupture mode, thickness and rigidity of overlying soil on the response of buried pipeline are analyzed. The nu...A 3-D soil-pipe nonlinear finite element model with contact element is suggested and the influences of the rupture mode, thickness and rigidity of overlying soil on the response of buried pipeline are analyzed. The numerical results show that the soil rupture mode determines the location of the large deformation or failure of the pipeline, and the plastic de- formation of the pipeline occurs at the zone where the plastic deformation or rupture of the overlying soil appears. When the fault dip angle on bedrock is near 90°, two plastic deformation sections of the pipeline appear with the development of overlying soil rupture. And the thicker the overlying soil is, the longer the plastic deformation length of the pipeline is and the less its strain is. The plastic deformation length of the pipeline decreases while its maximum strain increases with the rigidity of overlying soil increasing.展开更多
The influence of the overlying clay on the progression of piping in the sandy gravel foundation of water-retaining structures is often neglected. In order to study this influence, an experimental investigation was con...The influence of the overlying clay on the progression of piping in the sandy gravel foundation of water-retaining structures is often neglected. In order to study this influence, an experimental investigation was conducted on a laboratory-scale model. It was discovered that the critical hydraulic gradient and the area of the piping tunnel increase when the overlying clay thickens. With a thicker clay layer, erosion of the sandy gravel below the clay layer occurs later, but, once the erosion starts, the erosion rate is very high and the average velocity of water seeping through the cross-section of the sandy gravel increases rapidly due to the low deformability of the thick clay layer. Furthermore, it was found that the progression of piping is a complicated and iterative process involving erosion of fine particles, clogging of pores, and flushing of the clogged pores. Two types of erosion have been identified in the progression of piping: one causes the tunnel to advance upstream, and the other increases the depth of the tunnel. The results show that the overlying clay is an important factor when evaluating piping in sandy gravel foundations of water-retaining structures.展开更多
Based on the analysis about the hydrogeological conditions and engineering geological conditions, this paper makes analysis on the possible risks of the deep overlying stratum foundation and establishes the risk evalu...Based on the analysis about the hydrogeological conditions and engineering geological conditions, this paper makes analysis on the possible risks of the deep overlying stratum foundation and establishes the risk evaluation index system during the foundation operating period. Such methods as analytic hierarchy process (AHP) , Delphi method and fuzzy comprehensive evaluation method are adopted to make the quantitative analysis on the risk factors and establish the risk judgment model. According to the actual engineering of Taizhou Bridge, the paper evaluates the risk of the foundation during the operating period at the condition of deep overlying stratum. The evaluation results can provide the reference for the risk management of the bridge foundation durin~ the ooerating period.展开更多
In order to study the evolution laws during the development process of the coal face overburden rock mining-induced fissure,we studied the process of evolution of overburden rock mining-induced fissures and dynamicall...In order to study the evolution laws during the development process of the coal face overburden rock mining-induced fissure,we studied the process of evolution of overburden rock mining-induced fissures and dynamically quantitatively described its fractal laws,based on the high-precision microseismic monitoring method and the nonlinear Fractal Geometry Theory.The results show that:the overburden rock mining-induced fissure fractal dimension experiences two periodic change processes with the coal face advance,namely a Small→ Big→ Small process,which tends to be stable;the functional relationship between the extraction step distance and the overburden rock mining-induced fissure fractal dimension is a cubic curve.The results suggest that the fractal dimension reflects the evolution characteristics of the overburden rock mining-induced fissure,which can be used as an evaluation index of the stability of the overburden rock strata,and it provides theoretical guidance for stability analysis of the overburden rock strata,goaf roof control and the support movements in the mining face.展开更多
We combined the similar simulation with numerical simulation to analyze the movement and deforma- tion features of overlying strata caused by paste backfill mining, study the movement and deformation laws of the overl...We combined the similar simulation with numerical simulation to analyze the movement and deforma- tion features of overlying strata caused by paste backfill mining, study the movement and deformation laws of the overlying strata in paste backfill mining, structural movement of the stope strata as well as the stope stress distribution laws. Furthermore, authors also explored the key factors to the movement and deformation of the overlying strata in paste backfill mining. The results indicate that a caving zone existed in the bending zone only in the overlying strata of the paste backfill mining. Compared with the roof caving mining, the degree of stress concentration and area of influence in the paste filling stope were apparently smaller. And the degree of destruction and area of the overlying strata decreased prominently. Also, there was no apparent strata behavior in the working face. Lastly, the filling ratio was the key to control the movement and deformation of the overlying strata. Combined with a specific engineering example, the author proved the reliability of the simulation results and provided a theoretical basis for the further extension of the paste backfill mining.展开更多
To analyze the overlying strata movement law of recovering room mining standing pillars with solid backfilling.Physical simulation experiments with sponge and wood as the backfilling simulation material were tested.Th...To analyze the overlying strata movement law of recovering room mining standing pillars with solid backfilling.Physical simulation experiments with sponge and wood as the backfilling simulation material were tested.The results show that:(i) The covering-rock mechanics of the overly strata comes from "two-arch structures + hinged girder + bend beam" to "backfilling material + hinged girder + bent beam" by increasing the fill ratio from 0%to 85%,the beginning of overlying strata movement appears later and the total duration of subsidence velocity increased from zero to the highest value increases.The trend of "single polarization" of the subsidence velocity curves becomes noticeable and the velocity variation trend becomes stable,(ii) The equiponderate aeolian sand was added to improve the anti-pressure ability of the loess,and the corresponding ground processing & transportation system was designed.展开更多
The technology of pressure relief gas drainage is one of the most effective and economic for preventing gas emissions in underground mines.Based on current understanding of strata breakage and fracture development in ...The technology of pressure relief gas drainage is one of the most effective and economic for preventing gas emissions in underground mines.Based on current understanding of strata breakage and fracture development in overlying strata,the current study divides the overlying strata into the following three longitudinal zones in terms of the state of gas flow:a turbulent channel zone,a transitional circulation channel zone and a seepage channel zone.According to the key strata discrimination theory of controlling the overlying strata,the calculation method establishes that the step-type expansion of the mining gas channel corresponds to the advancing distance of working face,and this research also confrms the expanding rule that the mining gas channel in overlying strata follows the advancing distance of mining working face.Based on the geological conditions of Xinjing Coal Mine of Yangquan,this paper researches the expanding rule of mining gas channel as well as the control action of the channel acting on the pressure relief flow under the condition of the remote protective layer,and got the distance using inversion that the step-type expanding of mining gas channel is corresponding to the advancing distance of working face,which verifes the accuracy and feasibility of theoretical calculation method proposed in this study.The research provides the theoretical basis for choosing the technology of pressure relief gas drainage and designing the parameters of construction.展开更多
文摘随着运营线路的增多,郑州地铁已进入网络化运营的新阶段,对设备的日常维护也提出了更高的要求,通信专业设备众多,更需要通过智能运维来满足网络化运营的新要求。本文基于车站、控制中心的通信设备的维护现状,通过研究通信专业智能化集中运维方式,优化日常运维场景、故障处理场景、抢险抢修场景下人员分工和生产方式,提出新的基于KVM OVER IP的设备管理架构和运维模式,在不影响现网正常稳定运行、投资成本不高的情况下,实现地铁通信专业设备的集中化、智能化维护,进一步提升设备管理维护水平,同时为下一步建设网管网奠定基石,最终可轻松实现业务、管理2张网运行,结合大数据技术亦可实现地铁通信设备的智能监测、智能分析、智能维护,最大化的增加经济效益。
文摘Count data is almost always over-dispersed where the variance exceeds the mean. Several count data models have been proposed by researchers but the problem of over-dispersion still remains unresolved, more so in the context of change point analysis. This study develops a likelihood-based algorithm that detects and estimates multiple change points in a set of count data assumed to follow the Negative Binomial distribution. Discrete change point procedures discussed in literature work well for equi-dispersed data. The new algorithm produces reliable estimates of change points in cases of both equi-dispersed and over-dispersed count data;hence its advantage over other count data change point techniques. The Negative Binomial Multiple Change Point Algorithm was tested using simulated data for different sample sizes and varying positions of change. Changes in the distribution parameters were detected and estimated by conducting a likelihood ratio test on several partitions of data obtained through step-wise recursive binary segmentation. Critical values for the likelihood ratio test were developed and used to check for significance of the maximum likelihood estimates of the change points. The change point algorithm was found to work best for large datasets, though it also works well for small and medium-sized datasets with little to no error in the location of change points. The algorithm correctly detects changes when present and fails to detect changes when change is absent in actual sense. Power analysis of the likelihood ratio test for change was performed through Monte-Carlo simulation in the single change point setting. Sensitivity analysis of the test power showed that likelihood ratio test is the most powerful when the simulated change points are located mid-way through the sample data as opposed to when changes were located in the periphery. Further, the test is more powerful when the change was located three-quarter-way through the sample data compared to when the change point is closer (quarter-way) to the first observation.
基金Project (2013QNB30) supported by the Fundamental Research Funds for Central Universities,ChinaProject (2010CB226805) supported by the National Basic Research Program of China+3 种基金Project (51174285) supported by the National Natural Science Foundation of ChinaProject (2012BAK09B01) supported by the Twelfth Five-Year National Key Technology R&D Program,ChinaProject (SZBF2011-6-B35) supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,ChinaProject (SKLCRSM10X05) supported by the Independent Foundation of State Key Laboratory of Coal Resources and Safe Mining,China
文摘Spatial structure of overlying strata existed and evolved dynamically with the exploitation scope (boundary conditions) changes in coal mines and to induce rockburst. Based on the“key strata”theory, the integrated spatial structure of overlying strata was put forward, which was composed of “O-X” structure in the plane section and “F” structure in the vertical section. The formation and ongoing instability of the“O-X”and“F”structures were called as dynamic evolution cycle of the overlying strata. Three basic categories of “O-X”, “F” and “T” structures were defined, and the strata behaviors of each spatial structure were analyzed. According to energy theory, mechanism of rockburst induced by spatial structure instability was discussed. The research expanded the scope of traditional ground pressure theory and provided a guide for the prevention of rockburst and mining tremors induced by structure instability of overlying
基金Supported by Human Resources and Social Security Department Students Abroad Science and Technology Activities Preferred Foundation (Human and Social Council Issued 2008-86)Talent Development Fund Project in Jilin Province (Jilin 2007-259)+6 种基金Jilin Province Science and Technology Development Project (20060577 )Technology Project Jilin Provincial Ministry of Education (20094352006113 2007169)The Project Sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry ( 2005-546 )Science Foundation of Changchun Teachers University (2009002)Northeast Normal University Natural Science Foundation for Young Scholar (20050406)~~
文摘[Objective]The research aimed to investigate the bioturbation effects of benthic fish Misgurnus anguillicaudatus on phosphorus dynamic in overlying water of paddy field,as well as to explore the bioturbation mechanism.[Method]Based on simulation experiment,the phosphorus contents in overlying water were analyzed comparatively with and without Misgurnus anguillicaudatus by the using of ion chromatography and spectrophotometry.[Result]The concentrations of total phosphorus(TP),dissolved total phosphorus(DTP)and particular phosphorus(PP)in bioturbation group had no significant differences with those in control group in initial stage of experiment,and became significantly higher than control group in middle and late stages of experiment(P<0.05). The PP/TP ratios in bioturbation group were bigger than those in control group,the increase of TP concentration in bioturbation group was mainly due to the increase of PP. The ratios of dissolved inorganic phosphorus(DIP) to DTP (DIP/DTP) were significantly bigger than those in control group in middle and late stages of experiment(P<0.05).[Conclusion]The benthic fish had bioturbation effects on phosphorus in overlying water of paddy field,which increased the available phosphorus for rice growth.
文摘Mining-induced fracture zone will be produced in the overlying strata after the coal was mined.In this article,the mining-induced deformation of overlying strata and the time-space evolution law of fissure were studied by the methods of physical simulation and field measurement.The results show that bed separation fissure and vertical fissure will appear in the overlying strata above mining face,which form the wedge-shaped fissure zone.The open degree of fissure depends on the size of uncoordinated deformation between neighbor layers,and the absolute strata sinking controls both the width of bed separation zone and the open degree of vertical breakage fissure.At last,the calculating formula was deducted based on theoretical analysis.
基金supported by the Special Funding Projects of Sanjin Scholars” Supporting Plan (No. 2050205)the National Key Research Projects (No. 2016YFC0600701)Ordinary University Graduate Student Scientific Research Innovation Projects of Jiangsu Province of China (No. KYLX16_0564)
文摘The occurrence of overlying coal pillar(OCP)exerts a strong effect on the stress and strain distribution of the surrounding rock in the stope.In this paper,the stress distribution characteristics are analyzed via the numerical calculation with the account of OCP presence or absence.In addition,this study revealed the joint effect of side pressure relief area of the goaf and stress concentration in OCP on the final stress distribution.Furthermore,the rules of abutment stress distribution affected by three influencing factors,namely horizontal-vertical distances between OCP and working face and buried depth of OCP,are analyzed.The functional model linking the peak stress of surrounding rock with the above influencing factors is developed.The field application of the above results proved that the rib spalling and deformation of a 2.95 m-high and 5.66 m-wide roadway could be efficiently controlled by rationally adjusting working states of the support,and adopting the hydraulic prop coordinated with the p type metal beam and anchor cable to strengthen the surrounding rock of working face and roadway,respectively.The proposed measures are considered appropriate to satisfy the safe operation requirements.
基金supported by the National Natural Science Foundation of China(Grant Nos.50978045,51121005 and 51209033)
文摘Spudcan may experience punch-through failure on strong over weak layered soils, such as sand overlying clay. A large deformation finite element method (LDFE) is used to simulate the penetration process of spudcan into sand overlying clay. The sand is simulated by smoothed hyperbolic Mohr-Coulomb model, and the clay is simulated by a simple elasto-plastic model which obeys Tresca yield criterion. According to the LDFE results of a large amount of cases, the effects of the strength, unit weight and thickness of the top sand layer, as well as the effect of the strength of the underlying clay on the spudcan punch-through behavior, are investigated. The critical depth occurring punch-through and the critical bearing capacity are presented in charts. Fitting equations to calculate the critical punch-through depth and the critical bearing capacity are proposed for the convenience of engineering practice.
基金supported by the National Natural Science Foundation of China (No.51774111)Henan province science and technology innovation outstanding talent fund of China (No.184200510003)
文摘The height of fractured zone(HFZ) at the high-intensity longwall mining panel plays a vital role in the safety analysis of coal mining under bodies of water. This paper described definitions of the highintensity mining. The processes of overburden failure transfer(OFT) were analyzed, which were divided into the development stage and the termination stage. Through theoretical analysis, the limited suspension-distance and the limited overhanging distance were proposed to judge the damage of each stratum. Mechanical models of strata suspended integrity and overhanging stability were established.A theoretical method to predict the HFZ at the high-intensity longwall mining panel was put forward based on the processes of OFT. Taking a high-intensity longwall mining panel(No. 11915 panel) as an example, the theoretical method proposed, the engineering analogy and the empirical formulas in the Regulation were used to predict the HFZ. The results show that the theoretical result is consistent with the engineering analogies' result and empirical formulas' result. The rationality and reliability of the theoretical method proposed is verified.
基金This research is supported by the National Natural Science Foundation of China(51874289)and the National Key Research and Development Program of China(2018YFC0604705)and the Fundamental Research Funds for the Central Universities 2018ZDPY05.There is no conflict of interest regarding the publication of this paper.
文摘The changeable structure and movement law of overlying strata are the maincontributor to the change of mining stress.Starting from the relevant theory of keystratum and particularly based on the theory of mine ground pressure and strata control,this research proposed a new solution to mining stress problems by establishing adual-load-zone stratum structural model.Elastic foundation beam theory was used tosolve the stress of overlying strata of the dual-load-zones with superposition method,which revised the traditional calculation method of mining stress.The abnormal increaseof lead abutment pressure in the mining area was explained effectively,through which theevolution law of mining stress in the case of hard rock was obtained.The results indicatethat mining stress experiences a drastic change within the range of 50 m ahead of the coalwall due to the collapse of main roof;under the influence of main key stratum andinferior key strata,the influence range of lead abutment pressure is extended up toapproximately 120 m in the working face;this remarkable increase can be attributed tothe excessive length of sagging zone.Results from both the dual-load-zone modelexperiment and field measurement demonstrate high consistency.The model can predictthe influence range of abutment pressure effectively and thus guide the safety productionof mining.
基金Financial support for this work, provided by the National Basic Research Program of China (No. 2010CB226805)the National Natural Science Foundation of China (No. 51174285)+1 种基金the Twelfth Five-Year National Key Technology R&D Program (No. 2012BAK09B01)the Independent Foundation of State Key Laboratory of Coal Resources and Mine Safety (No. SKLCRSM10X05) are gratefully acknowledged
文摘The rupture and movement scope of overlying strata upon the longwall mining face increased sharply as the exploitation scale and degree growing recently,and the spatial structure formed by fractured strata became much more complex.The overlying strata above the working face and adjacent gobs would affect each other and move cooperatively because small pillar can hardly separate the connection of overlying strata between two workfaces,which leads to mining seismicity in the gob and induces rockburst disaster that named spatial structure instability rockburst in this paper.Based on the key stratum theory,the F-structure model was established to describe the overlying strata characteristic and rockburst mechanism of workface with one side of gob and the other side un-mined solid coal seam.The results show that F-structure in the gob will re-active and loss stability under the influence of neighboring mining,and fracture and shear slipping in the process of instability is the mechanism of the seismicity in the gob.The F-structure was divided into two categories that short-arm F and long-arm F structure based on the state of strata above the gob.We studied the underground pressure rules of different F-structure and instability mechanism,thus provide the guide for prevention and control of the F-structure spatial instability rockburst.The micro-seismic system is used for on-site monitoring and researching the distribution rules of seismic events,the results confrmed the existence and correct of F-spatial structure.At last specialized methods for prevention seismicity and rockburst induced by F-structure instability are proposed and applied in Huating Coal Mine.
基金the National Natural Science Foundation of China(Grant No.51634007)the Graduate Innovation Fund Project of Anhui University of Science and Technology of China(Grant No.2019CX1003).
文摘The breaking features and stress distribution of overlying strata in a steeply dipping coal seam(SDCS)differ significantly from those in a near-horizontal one.In this study,the laws governing the evolution of vertical stress release and shear stress concentration in the overlying strata of coal seams with different dip angles are derived via numerical simulation,rock mechanics tests,acoustic emissions,and field measurements.Thus,the stress-driven dynamic evolution of the overlying strata structure,in which a shear stress arch forms,is determined.Upon breaking the lower pari of the overlying strata,the shear stress transfers rapidly to the upper part of the working face.The damaged zone of the overlying strata migrates upward along the dip direction of the working face.The gangue in the lower part of the working face is compacted,leading to an increase in vertical stress.As the dip angle of the coal seam increases,the overlying strata fail suddenly under the action of shear stresses.Finally,the behavioral response of the overlying strata driven by shear stresses in the longwall working face of an SDCS is identified and analyzed in detail.The present research findings reveal the laws governing the behavior of mine pressure in the working face of an SDCS,which in turn can be used to establish the respective on-site guidance.
基金provided by the National Natural Science Foundation of China (No. 50974118)the New Century Talents Supporting Program from Ministry of Education (No.NCET-09-0727)the Program for Postgraduates Research Innovation in Universities of Jiangsu Province of China (No.CXZZ12_0951)
文摘Ascending mining is one of the most effective ways to solve problems of water inrush, gas outburst and rock burst in coal seams mining. In order to reveal the law of motion and spatiotemporal relationship of overlaying strata, field measurement has been done in a mine. Long distance drillings were constructed from 4# coal seam to 6# coal seam at several certain typical positions, and movement and failure law of overlying strata after mining was analyzed by drilling video and observing the fluid leakage. Besides, we also analyzed the spatiotemporal development law of overlying strata failure with different mining heights and time intervals in the lower coal seam. The results show that: ascending mining is significantly affected by time-domain characteristics of overlaying strata failure after the lower coal seam's mining, height equations of caving zone and fractured zone are given in this paper, and the feasibility of ascending mining was compartmentalized concretely according to the spatiotemporal relationship. Research methods and conclusions of this paper have certain referential significance for the study of ascending mining, mining under water, mining under building, mining under railway and stress-relief mining.
基金supported by the National Natural Science Foundation of China (50778166)the Basic Research Fund of State Level Research Institutes,Institute of Engineering Mechanics of China Earthquake Administration (2007B09)the National Scientific and Technological Support Project from Min-istry of Science and Technology (2006BAC13B02)
文摘A 3-D soil-pipe nonlinear finite element model with contact element is suggested and the influences of the rupture mode, thickness and rigidity of overlying soil on the response of buried pipeline are analyzed. The numerical results show that the soil rupture mode determines the location of the large deformation or failure of the pipeline, and the plastic de- formation of the pipeline occurs at the zone where the plastic deformation or rupture of the overlying soil appears. When the fault dip angle on bedrock is near 90°, two plastic deformation sections of the pipeline appear with the development of overlying soil rupture. And the thicker the overlying soil is, the longer the plastic deformation length of the pipeline is and the less its strain is. The plastic deformation length of the pipeline decreases while its maximum strain increases with the rigidity of overlying soil increasing.
基金supported by the 973 Program of China(Grant No.2012CB417005)the Postgraduate Research and Innovation Plan Project in Jiangsu Province(Grant No.CXZZ13_0243)
文摘The influence of the overlying clay on the progression of piping in the sandy gravel foundation of water-retaining structures is often neglected. In order to study this influence, an experimental investigation was conducted on a laboratory-scale model. It was discovered that the critical hydraulic gradient and the area of the piping tunnel increase when the overlying clay thickens. With a thicker clay layer, erosion of the sandy gravel below the clay layer occurs later, but, once the erosion starts, the erosion rate is very high and the average velocity of water seeping through the cross-section of the sandy gravel increases rapidly due to the low deformability of the thick clay layer. Furthermore, it was found that the progression of piping is a complicated and iterative process involving erosion of fine particles, clogging of pores, and flushing of the clogged pores. Two types of erosion have been identified in the progression of piping: one causes the tunnel to advance upstream, and the other increases the depth of the tunnel. The results show that the overlying clay is an important factor when evaluating piping in sandy gravel foundations of water-retaining structures.
基金National Science and Technology Support Program of China(No.2009BAG15B02)Key Programs for Science and Technology Development of Chinese Transportation Industry(No.2008-353-332-180)
文摘Based on the analysis about the hydrogeological conditions and engineering geological conditions, this paper makes analysis on the possible risks of the deep overlying stratum foundation and establishes the risk evaluation index system during the foundation operating period. Such methods as analytic hierarchy process (AHP) , Delphi method and fuzzy comprehensive evaluation method are adopted to make the quantitative analysis on the risk factors and establish the risk judgment model. According to the actual engineering of Taizhou Bridge, the paper evaluates the risk of the foundation during the operating period at the condition of deep overlying stratum. The evaluation results can provide the reference for the risk management of the bridge foundation durin~ the ooerating period.
基金Financial support for this work,provided by the National Natural Science Foundation of China(No.51304154)the Natural Science Foundation Anhui Province(No.1408085MKL92)
文摘In order to study the evolution laws during the development process of the coal face overburden rock mining-induced fissure,we studied the process of evolution of overburden rock mining-induced fissures and dynamically quantitatively described its fractal laws,based on the high-precision microseismic monitoring method and the nonlinear Fractal Geometry Theory.The results show that:the overburden rock mining-induced fissure fractal dimension experiences two periodic change processes with the coal face advance,namely a Small→ Big→ Small process,which tends to be stable;the functional relationship between the extraction step distance and the overburden rock mining-induced fissure fractal dimension is a cubic curve.The results suggest that the fractal dimension reflects the evolution characteristics of the overburden rock mining-induced fissure,which can be used as an evaluation index of the stability of the overburden rock strata,and it provides theoretical guidance for stability analysis of the overburden rock strata,goaf roof control and the support movements in the mining face.
基金supported by the National Natural Science Foundation of China (No. 50774077)the Special Funds of Universities Outstanding Doctoral Dissertation (No. 200760)+1 种基金the Independent Research Funding of the State Key Laboratory of Coal Resources and Mine Safety (No. SKLCRSM10X02)the Fundamental Research Funds for the Central Universities (Nos. 2010QNA31 and2010QNA32)
文摘We combined the similar simulation with numerical simulation to analyze the movement and deforma- tion features of overlying strata caused by paste backfill mining, study the movement and deformation laws of the overlying strata in paste backfill mining, structural movement of the stope strata as well as the stope stress distribution laws. Furthermore, authors also explored the key factors to the movement and deformation of the overlying strata in paste backfill mining. The results indicate that a caving zone existed in the bending zone only in the overlying strata of the paste backfill mining. Compared with the roof caving mining, the degree of stress concentration and area of influence in the paste filling stope were apparently smaller. And the degree of destruction and area of the overlying strata decreased prominently. Also, there was no apparent strata behavior in the working face. Lastly, the filling ratio was the key to control the movement and deformation of the overlying strata. Combined with a specific engineering example, the author proved the reliability of the simulation results and provided a theoretical basis for the further extension of the paste backfill mining.
基金provided by the National Natural Science Foundation of China(No.51074165)the NationalKey Basic Research Program of China(No.2013CB227905)the Qing-Lan Project of China Scholarship Council
文摘To analyze the overlying strata movement law of recovering room mining standing pillars with solid backfilling.Physical simulation experiments with sponge and wood as the backfilling simulation material were tested.The results show that:(i) The covering-rock mechanics of the overly strata comes from "two-arch structures + hinged girder + bend beam" to "backfilling material + hinged girder + bent beam" by increasing the fill ratio from 0%to 85%,the beginning of overlying strata movement appears later and the total duration of subsidence velocity increased from zero to the highest value increases.The trend of "single polarization" of the subsidence velocity curves becomes noticeable and the velocity variation trend becomes stable,(ii) The equiponderate aeolian sand was added to improve the anti-pressure ability of the loess,and the corresponding ground processing & transportation system was designed.
基金the National Basic Research Programs of China (No. 2011CB201204)the National Natural Science Foundation of China (Nos. 51074160)+1 种基金the Fundamental Research Funds for the Central Universities (No. 2010QNA03)Project Funded by the Priority Academic Program Development of Jiangsu Higher Education institutions for their support for this project
文摘The technology of pressure relief gas drainage is one of the most effective and economic for preventing gas emissions in underground mines.Based on current understanding of strata breakage and fracture development in overlying strata,the current study divides the overlying strata into the following three longitudinal zones in terms of the state of gas flow:a turbulent channel zone,a transitional circulation channel zone and a seepage channel zone.According to the key strata discrimination theory of controlling the overlying strata,the calculation method establishes that the step-type expansion of the mining gas channel corresponds to the advancing distance of working face,and this research also confrms the expanding rule that the mining gas channel in overlying strata follows the advancing distance of mining working face.Based on the geological conditions of Xinjing Coal Mine of Yangquan,this paper researches the expanding rule of mining gas channel as well as the control action of the channel acting on the pressure relief flow under the condition of the remote protective layer,and got the distance using inversion that the step-type expanding of mining gas channel is corresponding to the advancing distance of working face,which verifes the accuracy and feasibility of theoretical calculation method proposed in this study.The research provides the theoretical basis for choosing the technology of pressure relief gas drainage and designing the parameters of construction.