Overtaking is a crucial maneuver in road transportation that requires a clear view of the road ahead.However,limited visibility of ahead vehicles can often make it challenging for drivers to assess the safety of overt...Overtaking is a crucial maneuver in road transportation that requires a clear view of the road ahead.However,limited visibility of ahead vehicles can often make it challenging for drivers to assess the safety of overtaking maneuvers,leading to accidents and fatalities.In this paper,we consider atrous convolution,a powerful tool for explicitly adjusting the field-of-view of a filter as well as controlling the resolution of feature responses generated by Deep Convolutional Neural Networks in the context of semantic image segmentation.This article explores the potential of seeing-through vehicles as a solution to enhance overtaking safety.See-through vehicles leverage advanced technologies such as cameras,sensors,and displays to provide drivers with a real-time view of the vehicle ahead,including the areas hidden from their direct line of sight.To address the problems of safe passing and occlusion by huge vehicles,we designed a see-through vehicle system in this study,we employed a windshield display in the back car together with cameras in both cars.The server within the back car was used to segment the car,and the segmented portion of the car displayed the video from the front car.Our see-through system improves the driver’s field of vision and helps him change lanes,cross a large car that is blocking their view,and safely overtake other vehicles.Our network was trained and tested on the Cityscape dataset using semantic segmentation.This transparent technique will instruct the driver on the concealed traffic situation that the front vehicle has obscured.For our findings,we have achieved 97.1% F1-score.The article also discusses the challenges and opportunities of implementing see-through vehicles in real-world scenarios,including technical,regulatory,and user acceptance factors.展开更多
Previously we examined different parameters relevant to traffic flow. For illustrative purposes we considered a specific case of approaching a city. The case involves a traffic light where one continues on the main ro...Previously we examined different parameters relevant to traffic flow. For illustrative purposes we considered a specific case of approaching a city. The case involves a traffic light where one continues on the main road, into which additional cars are entering at the light. At this intersection an alternative route begins, which is longer but into which no additional cars are entering. In addition to the “Slow to move” model we add here a possibility of “overtaking”, which is quite artificial as our model is one dimensional. Still we think that this gives fair results.展开更多
基金financially supported by the Ministry of Trade,Industry and Energy(MOTIE)and Korea Institute for Advancement of Technology(KIAT)through the International Cooperative R&D Program(Project No.P0016038)supported by the MSIT(Ministry of Sci-ence and ICT),Korea,under the ITRC(Information Technology Research Center)support program(IITP-2022-RS-2022-00156354)supervised by the IITP(Institute for Information&Communications Technology Planning&Evaluation).
文摘Overtaking is a crucial maneuver in road transportation that requires a clear view of the road ahead.However,limited visibility of ahead vehicles can often make it challenging for drivers to assess the safety of overtaking maneuvers,leading to accidents and fatalities.In this paper,we consider atrous convolution,a powerful tool for explicitly adjusting the field-of-view of a filter as well as controlling the resolution of feature responses generated by Deep Convolutional Neural Networks in the context of semantic image segmentation.This article explores the potential of seeing-through vehicles as a solution to enhance overtaking safety.See-through vehicles leverage advanced technologies such as cameras,sensors,and displays to provide drivers with a real-time view of the vehicle ahead,including the areas hidden from their direct line of sight.To address the problems of safe passing and occlusion by huge vehicles,we designed a see-through vehicle system in this study,we employed a windshield display in the back car together with cameras in both cars.The server within the back car was used to segment the car,and the segmented portion of the car displayed the video from the front car.Our see-through system improves the driver’s field of vision and helps him change lanes,cross a large car that is blocking their view,and safely overtake other vehicles.Our network was trained and tested on the Cityscape dataset using semantic segmentation.This transparent technique will instruct the driver on the concealed traffic situation that the front vehicle has obscured.For our findings,we have achieved 97.1% F1-score.The article also discusses the challenges and opportunities of implementing see-through vehicles in real-world scenarios,including technical,regulatory,and user acceptance factors.
文摘Previously we examined different parameters relevant to traffic flow. For illustrative purposes we considered a specific case of approaching a city. The case involves a traffic light where one continues on the main road, into which additional cars are entering at the light. At this intersection an alternative route begins, which is longer but into which no additional cars are entering. In addition to the “Slow to move” model we add here a possibility of “overtaking”, which is quite artificial as our model is one dimensional. Still we think that this gives fair results.