期刊文献+
共找到37篇文章
< 1 2 >
每页显示 20 50 100
Numerical simulations of Atlantic meridional overturning circulation(AMOC)from OMIP experiments and its sensitivity to surface forcing
1
作者 Xiaowei WANG Yongqiang YU 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第2期454-467,共14页
Atlantic meridional overturning circulation(AMOC)plays an important role in transporting heat meridionally in the Earth’s climate system and is also a key metrical tool to verify oceanic general circulation models.Tw... Atlantic meridional overturning circulation(AMOC)plays an important role in transporting heat meridionally in the Earth’s climate system and is also a key metrical tool to verify oceanic general circulation models.Two OMIP(Ocean Model Intercomparison Project phase 1 and 2)simulations with LICOM3(version 3 of the LASG/IAP Climate System Ocean Model)developed at the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics(LASG),Institute of Atmospheric Physics(IAP),are compared in this study.Both simulations well reproduce the fundamental characteristics of the AMOC,but the OMIP1 simulation shows a significantly stronger AMOC than the OMIP2 simulation.Because the LICOM3 configurations are identical between these two experiments,any differences between them must be attributed to the surface forcing data.Further analysis suggests that sea surface salinity(SSS)differences should be mainly responsible for the enhanced AMOC in the OMIP1 simulation,but sea surface temperature(SST)also play an unignorable role in modulating AMOC.In the North Atlantic,where deep convection occurs,the SSS in OMIP1 is more saline than that in OMIP1.We find that in the major region of deep convection,the change of SSS has more significant effect on density than the change of SST.As a result,the SSS was more saline than that in OMIP2,leading to stronger deep convection and subsequently intensify the AMOC.We conduct a series of numerical experiments with LICOM3,and the results confirmed that the changes in SSS have more significant effect on the strength of AMOC than the changes in SST. 展开更多
关键词 oceanic general circulation model(OGCM) Atlantic meridional overturning(AMOC) surface forcing deep convection
下载PDF
Safety Risk Assessment of Overturning Construction of Towering Structure Based on Cloud Matter–Element Coupled Model
2
作者 Yingxue Sang Fengxia Han +2 位作者 Qing Liu Liang Qiao Shouxi Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第8期1973-1998,共26页
Rapid urbanization has led to a surge in the number of towering structures,and overturning is widely used because it can better accommodate the construction of shaped structures such as variable sections.The complexit... Rapid urbanization has led to a surge in the number of towering structures,and overturning is widely used because it can better accommodate the construction of shaped structures such as variable sections.The complexity of the construction process makes the construction risk have certain randomness,so this paper proposes a cloudbased coupled matter-element model to address the ambiguity and randomness in the safety risk assessment of overturning construction of towering structures.In the pretended model,the digital eigenvalues of the cloud model are used to replace the eigenvalues in the matter–element basic element,and calculate the cloud correlation of the risk assessment metrics through the correlation algorithm of the cloud model to build the computational model.Meanwhile,the improved hierarchical analysis method based on the cloud model is used to determine the weight of the index.The comprehensive evaluation scores of the evaluation event are then obtained through the weighted average method,and the safety risk level is determined accordingly.Through empirical analysis,(1)the improved hierarchical analysis method based on the cloud model can incorporate the data of multiple decisionmakers into the calculation formula to determine theweights,which makes the assessment resultsmore credible;(2)the evaluation results of the cloud-basedmatter-element coupledmodelmethod are basically consistent with those of the other two commonly used methods,and the confidence factor is less than 0.05,indicating that the cloudbased physical element coupled model method is reasonable and practical for towering structure overturning;(3)the cloud-based coupled element model method,which confirms the reliability of risk level by performing Spearman correlation on comprehensive assessment scores,can provide more comprehensive information of instances compared with other methods,and more comprehensively reflects the fuzzy uncertainty relationship between assessment indexes,which makes the assessment results more realistic,scientific and reliable. 展开更多
关键词 Cloud matter-element model clouded hierarchical analysis method towering structure overturning formwork construction risk assessment
下载PDF
The three-dimensional structure and seasonal variation of the North Pacific meridional overturning circulation 被引量:7
3
作者 LIU Hongwei ZHANG Qilong +1 位作者 DUAN Yongliang HOU Yijun 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2011年第3期33-42,共10页
The three-dimensional structure and the seasonal variation of the North Pacific meridional overturning circulation (NPMOC) are analyzed based on the Simple Ocean Data Assimilation data and Argo profiling float data.... The three-dimensional structure and the seasonal variation of the North Pacific meridional overturning circulation (NPMOC) are analyzed based on the Simple Ocean Data Assimilation data and Argo profiling float data. The NPMOC displays a multi-cell structure with four cells in the North Pacific altogether. The TC and the STC are a strong clockwise meridional cell in the low latitude ocean and a weaker clockwise meridional cell between 7°N and 18°N, respectively, while the DTC and the subpolar cell are a weaker anticlockwise meridional cell between 3°N and 15°N and a weakest anticlockwise meridional cell between 35°N and 50°N, respectively. The DTC, the TC and the STC are all of very strong seasonal variations. As to the DTC, the southward transport is strongest in fall and weakest in spring. For the TC, the northward transport is strongest in winter and weakest in spring, while the southward transport is strongest in fall and weakest in spring, which is associated with the strong southward fiow of the DTC in fall. As the STC, the northward transport is strongest in winter and weakest in summer, while the southward transport is strongest in summer and weakest in spring. This seasonal difference may be associated with the DTC. The zonal wind stress and the east-west slope of sea level play important roles in the seasonal variations of the TC, the STC and the DTC. 展开更多
关键词 North Pacific meridional overturning circulation three-dimensional structure seasonal variation
下载PDF
The Shallow Meridional Overturning Circulation in the Northern Indian Ocean and Its Interannual Variability 被引量:4
4
作者 胡瑞金 刘秦玉 +2 位作者 王启 J.Stuart GODFREY 孟祥凤 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2005年第2期220-229,共10页
The shallow meridional overturning circulation (upper 1000 m) in the northern Indian Ocean and its interannual variability are studied, based on a global ocean circulation model (MOM2) with an integration of 10 years ... The shallow meridional overturning circulation (upper 1000 m) in the northern Indian Ocean and its interannual variability are studied, based on a global ocean circulation model (MOM2) with an integration of 10 years (1987-1996). It is shown that the shallow meridional overturning circulation has a prominent seasonal reversal characteristic. In winter, the flow is northward in the upper layer and returns southward at great depth. In summer, the deep northward inflow upwells north of the equator and returns southward in the Ekman layer. In the annual mean, the northward inflow returns through two branches: one is a southward flow in the Ekman layer, the other is a flow that sinks near 10°N and returns southward between 500 m and 1000 m. There is significant interannual variability in the shallow meridional overturning circulation, with a stronger (weaker) one in 1989 (1991) and with a period of about four years. The interannual variability of the shallow meridional overturning circulation is intimately r 展开更多
关键词 meridional overturning circulation northern Indian Ocean interannual variability wind stress circulation index
下载PDF
Revisiting Effect of Ocean Diapycnal Mixing on Atlantic Meridional Overturning Circulation Recovery in a Freshwater Perturbation Simulation 被引量:5
5
作者 于雷 郜永祺 +1 位作者 王会军 Helge DRANGE 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2008年第4期597-609,共13页
The effects of ocean density vertical stratification and related ocean mixing on the transient response of the Atlantic meridional overturning circulation (AMOC) are examined in a freshwater perturbation simulation ... The effects of ocean density vertical stratification and related ocean mixing on the transient response of the Atlantic meridional overturning circulation (AMOC) are examined in a freshwater perturbation simulation using the Bergen Climate Model (BCM). The results presented here are based on the model outputs of a previous freshwater experiment: a 300-year control integration (CTRL), a freshwater integration (FW1) which started after 100 years of running the CTRL with an artificially and continuously threefold increase in the freshwater flux to the Greenland-Iceland-Norwegian (GIN) Seas and the Arctic Ocean throughout the following 150-year simulation. In FW1, the transient response of the AMOC exhibits an initial decreasing of about 6 Sv (1 Sv=106 m3 s^-1) over the first 50-year integration and followed a gradual recovery during the last 100-year integration. Our results show that the vertical density stratification as the crucial property of the interior ocean plays an important role for the transient responses of AMOC by regulating the convective and diapycnal mixings under the enhanced freshwater input to northern high latitudes in BCM in which the ocean diapycnal mixing is stratification-dependent. The possible mechanism is also investigated in this paper. 展开更多
关键词 North Atlantic meridional overturning circulation enhanced freshwater forcing diapycnal mixing
下载PDF
Zonal overturning circulation and heat flux induced by heaving modes in the world oceans 被引量:2
6
作者 TAN Wei HUANG Rui Xin +1 位作者 WANG Weiqiang WANG Xin 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2015年第11期80-91,共12页
Zonal overturning circulation (ZOC) and its associated zonal heat flux (ZHF) are important components of the oceanic circulation and climate system, although these conceptions have not received adequate attentions... Zonal overturning circulation (ZOC) and its associated zonal heat flux (ZHF) are important components of the oceanic circulation and climate system, although these conceptions have not received adequate attentions. Heaving induced by inter-annual and decadal wind stress perturbations can give rise to anomalous ZOC and ZHF. Based on a simple reduced gravity model, the anomalous ZOC and ZHF induced by idealized heaving modes in the world oceans are studied. For example, in a Pacific-like model basin intensified equatorial easterly on decadal time scales can lead to a negative ZOC with a non-negligible magnitude (-0.3×10^6 m^3/s) and a considerable westward ZHF with an amplitude of -11.2 TW. Thus, anomalous ZOC and ZHF may consist of a major part of climate signals on decadal time scales and thus play an important role in the oceanic circulation and climate change. 展开更多
关键词 adiabatic motions heaving wind-driven circulation zonal overturning circulation zonal heat flux
下载PDF
Neural network analysis of overturning response under near-fault type excitation 被引量:1
7
作者 Nikos Gerolymos Marios Apostolou George Gazetas 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2005年第2期213-228,共16页
Under strong seismic excitation, a rigid block will uplift from its support and undergo rocking oscillations which may lead to (complete) overturning. Numerical and analytical solutions to this highly nonlinear vibr... Under strong seismic excitation, a rigid block will uplift from its support and undergo rocking oscillations which may lead to (complete) overturning. Numerical and analytical solutions to this highly nonlinear vibration problem are first highlighted in the paper and then utilized to demonstrate how sensitive the overturning behavior is not only to the intensity and frequency content of the base motion, but also to thc presence of strong pulses, to their detailed sequence, and even to their asymnletry. Five idealised pulses capable of representing "rupture-directivity" and "fling" affected ground motions near the fault, are utilized to this end : the one-cycle sinus, the one-cycle cosinus, the Ricker wavelet, the truncated (T)-Ricker wavelet, and the rectangular pulse "Overturning-Acceleration Amplification" and "Rotation" spectra are introduced and presented. Artificial neural network modeling is then developed as an alternative numerical solution. The neural network analysis leads to closed-form expressions for predicting the overturning failure or survival of a rigid block, as a function of its geometric properties and the characteristics of the excitation time history. The capability of the developed neural network modeling is validated through comparisons with the numerical solution. The derived analytical expressions could also serve as a tool for assessing the destructiveness of near-fault ground motions, for structures sensitive to rocking with foundation uplift. 展开更多
关键词 overturning UPLIFTING pulse near-fault moti neural network rocking spectrum Kocaeli records
下载PDF
The shallow meridional overturning circulation in the South China Sea and the related internal water movement 被引量:1
8
作者 ZHANG Ningning LAN Jian +1 位作者 MA Jie CUI Fengjuan 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2016年第7期1-7,共7页
The structure of the annual-mean shallow meridional overturning circulation (SMOC) in the South China Sea (SCS) and the related water movement are investigated, using simple ocean data assimilation (SODA) output... The structure of the annual-mean shallow meridional overturning circulation (SMOC) in the South China Sea (SCS) and the related water movement are investigated, using simple ocean data assimilation (SODA) outputs. The distinct clockwise SMOC is present above 400 m in the SCS on the climatologically annual-mean scale, which consists of downwelling in the northern SCS, a southward subsurface branch supplying upwelling at around 10°N and a northward surface flow, with a strength of about 1x 108 ma/s. The formation mechanisms of its branches are studied separately. The zonal component of the annual-mean wind stress is predominantly westward and causes northward Ekman transport above 50 m. The annual-mean Ekman transport across 18°N is about 1.2×106 m^3/s. An annual-mean subduction rate is calculated by estimating the net volume flux entering the thermocline from the mixed layer in a Lagrangian framework. An annual subduction rate of about 0.66×106 ma/s is obtained between 17° and 20°N, of which 87% is due to vertical pumping and 13% is due to lateral induction. The subduction rate implies that the subdution contributes significantly to the downwelling branch. The pathways of traced parcels released at the base of the February mixed layer show that after subduction water moves southward to as far as 1 I^N within the western boundary current before returning northward. The velocity field at the base of mixed layer and a meridional velocity section in winter also confirm that the southward flow in the subsurface layer is mainly by strong western boundary currents. Significant upwelling mainly occurs off the Vietnam coast in the southern SCS. An upper bound for the annual-mean net upwelfing rate between 10° and 15°N is 0.7×108 ma/s, of which a large portion is contributed by summer upwelling, with both the alongshore component of the southwest wind and its offshore increase causing great upwelling. 展开更多
关键词 South China Sea shallow meridional overturning circulation Ekman transport SUBDUCTION UPWELLING
下载PDF
Mechanisms of Atlantic Meridional Overturning Circulation(AMOC)Variability in a Coupled Ocean–Atmosphere GCM 被引量:1
9
作者 Boyin HUANG ZHU Jiang YANG Haijun 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2014年第2期241-251,共11页
The mechanisms involved in the variability of Atlantic Meridional Overturning Circulation (AMOC) are studied using a 2000-yr control simulation of the coupled Fast Ocean-Atmosphere Model (FOAM).This study identifi... The mechanisms involved in the variability of Atlantic Meridional Overturning Circulation (AMOC) are studied using a 2000-yr control simulation of the coupled Fast Ocean-Atmosphere Model (FOAM).This study identifies a coupled mode between SST and surface heat flux in the North Atlantic at the decadal timescale,as well as a forcing mode of surface heat flux at the interannual timescale.The coupled mode is regulated by AMOC through meridional heat transport.The increase in surface heating in the North Atlantic weakens the AMOC approximately 10 yr later,and the weakened AMOC in turn decreases SST and sea surface salinity.The decreased SST results in an increase in surface heating in the North Atlantic,thus forming a positive feedback loop.Meanwhile,the weakened AMOC weakens northward heat transport and therefore lowers subsurface temperature approximately 19 yr later,which prevents the AMOC from weakening.In the forcing mode,the surface heat flux leads AMOC by approximately 4 yr. 展开更多
关键词 Atlantic Meridional overturning Circulation AMOC variability coupled mode and forcing mode
下载PDF
Low-frequency variability of the shallow meridional overturning circulation in the South China Sea 被引量:3
10
作者 YANG Zhitong LUO Yiyong 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2016年第3期10-20,共11页
The low-frequency variability of the shallow meridional overturning circulation(MOC) in the South China Sea(SCS) is investigated using a Simple Ocean Data Assimilation(SODA) product for the period of 1900-2010. ... The low-frequency variability of the shallow meridional overturning circulation(MOC) in the South China Sea(SCS) is investigated using a Simple Ocean Data Assimilation(SODA) product for the period of 1900-2010. A dynamical decomposition method is used in which the MOC is decomposed into the Ekman, external mode, and vertical shear components. Results show that all the three dynamical components contribute to the formation of the seasonal and annual mean shallow MOC in the SCS. The shallow MOC in the SCS consists of two cells: a clockwise cell in the south and an anticlockwise cell in the north; the former is controlled by the Ekman flow and the latter is dominated by the external barotropic flow, with the contribution of the vertical shear being to reduce the magnitude of both cells. In addition, the strength of the MOC in the south is found to have a falling trend over the past century, due mainly to a weakening of the Luzon Strait transport(LST) that reduces the transport of the external component. Further analysis suggests that the weakening of the LST is closely related to a weakening of the westerly wind anomalies over the equatorial Pacific, which leads to a southward shift of the North Equatorial Current(NEC) bifurcation and thus a stronger transport of the Kuroshio east of Luzon. 展开更多
关键词 South China Sea meridional overturning circulation Luzon Strait transport North Equatorial Current bifurcation
下载PDF
The seasonal variation of the North Pacific Meridional Overturning Circulation heat transport
11
作者 LIU Hongwei ZHANG Qilong +2 位作者 PANG Chongguang DUAN Yongliang XU Jianping 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2019年第2期423-433,共11页
Based on the 50-year Simple Ocean Data Assimilation (SODA) reanalysis data, we investigated the basic characteristics and seasonal changes of the meridional heat transport carried by the North Pacific Meridional Overt... Based on the 50-year Simple Ocean Data Assimilation (SODA) reanalysis data, we investigated the basic characteristics and seasonal changes of the meridional heat transport carried by the North Pacific Meridional Overturning Circulation. And we also examined the dynamical and thermodynamic mechanisms responsible for these heat transport variability at the seasonal time scale. Among four cells, the tropical cell (TC) is strongest with a northward heat transport (NHT) of (1.75±0.30) PW (1 PW=1.0×10^15 W) and a southward heat transport (SHT) of (-1.69±0.55) PW, the subtropical cell (STC) is second with a NHT of (0.71±0.65) PW and SHT of (-0.63±0.53) PW, the deep tropical cell (DTC) is third with a NHT of (0.18±0.03) PW and SHT of (-0.18±0.11) PW, while the subpolar cell (SPC) is weakest with a NHT of (0.09±0.05) PW and SHT of (-0.07±0.09) PW. These four cells all have diff erent seasonal changes in their NHT and SHT. Of all, the TC has stronger change in its SHT than in its NHT, so do both the DTC and SPC, but the seasonal change in the STC SHT is weaker than that in its NHT. Therefore, their dynamical and thermodynamic mechanisms are diff erent each other. The local zonal wind stress and net surface heat flux are mainly responsible for the seasonal changes in the TC and STC NHTs and SPC SHT, while the local thermocline circulations and sea temperature are primarily responsible for the seasonal changes of the TC, STC and DTC SHTs and SPC NHT. 展开更多
关键词 MERIDIONAL overturning CIRCULATION heat transport NORTH PACIFIC SEASONAL variation
下载PDF
Effect of increasing Arctic river runoff on the Atlantic meridional overturning circulation:a model study
12
作者 SHU Qi QIAO Fangli +1 位作者 SONG Zhenya XIAO Bin 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2017年第8期59-65,共7页
An increasing amount of freshwater has been observed to enter the Arctic Ocean from the six largest Eurasian rivers over the past several decades. The increasing trend is projected to continue in the twenty-first cent... An increasing amount of freshwater has been observed to enter the Arctic Ocean from the six largest Eurasian rivers over the past several decades. The increasing trend is projected to continue in the twenty-first century according to Coupled Model Intercomparison Project Phase 5 (CMIP5) coupled models. The present study found that water flux from rivers to the Arctic Ocean at the end of the century will be 1.4 times that in 1950 according to CMIP5 projection results under Representative Concentration Pathway 8.5. The effect of increasing Arctic river runoff on the Atlantic meridional overturning circulation (AMOC) was investigated using an ocean-ice coupled model. Results obtained from two numerical experiments show that 100, 150 and 200 years after the start of an increase in the Arctic river runoff at a rate of 0.22%/a, the AMOC will weaken by 0.6 (3%), 1.2 (7%) and 1.8 (11%) Sv. AMOC weakening is mainly caused by freshwater transported from increasing Arctic river runoff inhibiting the formation of North Atlantic Deep Water (NADW). As the AMOC weakens, the deep seawater age will become older throughout the Atlantic Basin owing to the increasing of Arctic runoff. 展开更多
关键词 climate change Arctic river runoff Atlantic meridional overturning circulation
下载PDF
Pulses in ground motions identified through surface partial matching and their impact on seismic rocking consequence
13
作者 Tang Yuchuan Wang Jiankang Wu Gang 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第1期35-50,共16页
In seismology and earthquake engineering,it is fundamental to identify and characterize the pulse-like features in pulse-type ground motions.To capture the pulses that dominate structural responses,this study establis... In seismology and earthquake engineering,it is fundamental to identify and characterize the pulse-like features in pulse-type ground motions.To capture the pulses that dominate structural responses,this study establishes congruence and shift relationships between response spectrum surfaces.A similarity search between spectrum surfaces,supplemented with a similarity search in time series,has been applied to characterize the pulse-like features in pulse-type ground motions.The identified pulses are tested in predicting the rocking consequences of slender rectangular blocks under the original ground motions.Generally,the prediction is promising for the majority of the ground motions where the dominant pulse is correctly identified. 展开更多
关键词 velocity pulse ground motion surface similarity ROCKING overturning
下载PDF
Multi-spatial variability modes of the Atlantic Meridional Overturning Circulation 被引量:5
14
作者 ZHOU Tianjun LASG, institute of Atmospheric Physics. Chinese Academy of Sciences, Beijing 100029. China 《Chinese Science Bulletin》 SCIE EI CAS 2003年第S2期30-35,共6页
The multi-spatial variability modes of the At-lantic Meridional Overturning Circulation (MOO are iden-tified in the natural coupled simulation of two climate models,the MOC either oscillates at decadal scales with str... The multi-spatial variability modes of the At-lantic Meridional Overturning Circulation (MOO are iden-tified in the natural coupled simulation of two climate models,the MOC either oscillates at decadal scales with strong cross-equatorial flow or fluctuates locally at interannual scaleswith weaker cross-equatorial flow. Former studies mainlyemphasize the paleo-environmental and paleo-climatic im-pacts of the meridional overturning states transition; thisanalysis indicates the existence of the multi-spatial variabilitymodes of the MOC at interannual to decadal scales. Furtheranalysis indicates that the conventionally used MOC index,which is defined as the maximum zonal mean meridionalstream-function of the North Atlantic, cannot properly de-scribe the multi-spatial variability characteristics of theMOC. 展开更多
关键词 ATLANTIC MERIDIONAL overturning CIRCULATION basin SCALE local scale.
原文传递
RAYLEIGH-TAYLOR INSTABILITIES BY OVERTURNING EXPERIMENTS IN TANK 被引量:2
15
作者 LI Xi CHU Vincent H. 《Journal of Hydrodynamics》 SCIE EI CSCD 2007年第3期303-308,共6页
A laboratory study of the turbulence front initiated by the Rayleigh-Taylor instabilities was conducted by overturning a two-layer stratified flow in a tank. Dye was introduced to the upper layer and the concentration... A laboratory study of the turbulence front initiated by the Rayleigh-Taylor instabilities was conducted by overturning a two-layer stratified flow in a tank. Dye was introduced to the upper layer and the concentration of the dye was determined using a video imaging method. The mass center of the heavier upper layer moved continuously to a lower elevation because of the intrusion of the heavier fluid into the lower layer and the lighter fluid into the upper layer. The downward movement of the mass center was accurately determined from the dye concentration profile. It is concluded that the initial advancement of the mass center follows a quadratic relation with time and the final advancement obeys a linear relation with time. 展开更多
关键词 Rayleigh-Taylor instability stratified flow turbulent mixing video imaging technique overturning experiment
原文传递
Role of Ocean Dynamics in the Seasonal Hadley Cell:A Response to Idealized Arctic Amplification
16
作者 Haijin DAI Qiang YAO 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第12期2211-2223,共13页
How atmospheric and oceanic circulations respond to Arctic warming at different timescales are revealed with idealized numerical simulations.Induced by local forcing and feedback,Arctic warming appears and leads to se... How atmospheric and oceanic circulations respond to Arctic warming at different timescales are revealed with idealized numerical simulations.Induced by local forcing and feedback,Arctic warming appears and leads to sea-ice melting.Deep-water formation is inhibited,which weakens the Atlantic Meridional Overturning Circulation(AMOC).The flow and temperature in the upper layer does not respond to the AMOC decrease immediately,especially at mid-low latitudes.Thus,nearly uniform surface warming in mid-low latitudes enhances(decreases)the strength(width)of the Hadley cell(HC).With the smaller northward heat carried by the weaker AMOC,the Norwegian Sea cools significantly.With strong warming in Northern Hemisphere high latitudes,the long-term response triggers the“temperature-wind-gyre-temperature”cycle,leading to colder midlatitudes,resulting in strong subsidence and Ferrel cell enhancement,which drives the HC southward.With weaker warming in the tropics and stronger warming at high latitudes,there is a stronger HC with decreased width.A much warmer Southern Hemisphere appears due to a weaker AMOC that also pushes the HC southward.Our idealized model results suggest that the HC strengthens under both warming conditions,as tropical warming determines the strength of the HC convection.Second,extreme Arctic warming led by artificially reduced surface albedo decreases the meridional temperature gradient between high and low latitudes,which contracts the HC.Third,a warmer mid-high latitude in the Northern(Southern)Hemisphere due to surface albedo feedback(weakened AMOC)in our experiments pushes the HC northward(southward).In most seasons,the HC exhibits the same trend as that described above. 展开更多
关键词 Hadley cell Arctic amplification Southern Hemisphere warming Atlantic Meridional overturning Circulation
下载PDF
The influence of explicit tidal forcing in a climate ocean circulation model 被引量:2
17
作者 YU Yi LIU Hailong LAN Jian 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2016年第9期42-50,共9页
The eight main tidal constituents have been implemented in the global ocean general circulation model with approximate 1° horizontal resolution.Compared with the observation data,the patterns of the tidal amplitu... The eight main tidal constituents have been implemented in the global ocean general circulation model with approximate 1° horizontal resolution.Compared with the observation data,the patterns of the tidal amplitudes and phases had been simulated fairly well.The responses of mean circulation,temperature and salinity are further investigated in the global sense.When implementing the tidal forcing,wind-driven circulations are reduced,especially those in coastal regions.It is also found that the upper cell transport of the Atlantic meridional overturning circulation(AMOC) reduces significantly,while its deep cell transport is slightly enhanced from 9×106m3/s to 10×106 m3/s.The changes of circulations are all related to the increase of a bottom friction and a vertical viscosity due to the tidal forcing.The temperature and salinity of the model are also significantly affected by the tidal forcing through the enhanced bottom friction,mixing and the changes in mean circulation.The largest changes occur in the coastal regions,where the water is cooled and freshened.In the open ocean,the changes are divided into three layers:cooled and freshened on the surface and below 3 000 m,and warmed and salted in the middle in the open ocean.In the upper two layers,the changes are mainly caused by the enhanced mixing,as warm and salty water sinks and cold and fresh water rises;whereas in the deep layer,the enhancement of the deep overturning circulation accounts for the cold and fresh changes in the deep ocean. 展开更多
关键词 tidal forcing tidal mixing ocean general circulation model wind-driven circulation Atlantic meridional overturning circulation
下载PDF
多种代用资料和模型模拟得到的亚洲季风在8.2ka显著气候影响的证据(英文) 被引量:3
18
作者 MORRILL Carrie WAGNER Amy J +1 位作者 OTTO-BLIESNER Bette L ROSENBLOOM Nan 《地球环境学报》 2011年第3期426-441,共16页
Given the likelihood of future reductions in the strength of the Atlantic Meridional Overturning Circulation(AMOC),it is important to document how changes in the AMOC have altered climate patterns in the past and to a... Given the likelihood of future reductions in the strength of the Atlantic Meridional Overturning Circulation(AMOC),it is important to document how changes in the AMOC have altered climate patterns in the past and to assess the skill of coupled climate models in reproducing these teleconnections.Of past abrupt changes in the AMOC,the 8.2 ka event provides a particularly useful case study because its duration,magnitude of AMOC reduction and background climate state are closest to conditions expected in the future.In this research,we present an expanded proxy synthesis of the 8.2 ka event in monsoonal Asia,including new high-resolution lake and bog records,more sites from the East Asia monsoon region and proxies of winter monsoon strength.We compare proxy evidence with a new simulation of the 8.2 ka event using the Community Climate System Model version 3(CCSM3) and prescribing North Atlantic freshwater forcing according to the latest reconstructions.We find clear and objectively-determined evidence for 8.2 ka climate anomalies at nearly all of the fourteen proxy sites,emphasizing the strong and widespread impacts of the event in monsoonal Asia during both summer and winter seasons.The model simulation corroborates that these anomalies,described generally as a weakening of the summer monsoon and strengthening of the winter monsoon,were likely caused by a reduction of the AMOC.Examination of regional anomalies in East Asia reveals some spatial heterogeneity,however,that in the model simulation is caused by contraction of the seasonal migration of the subtropical monsoon front.The duration of climate anomalies at 8.2 ka in monsoonal Asia,both in proxy records and the model simulation,generally matches the duration of the event in Greenland ice core δ^(18)O,further supporting a tight connection to the North Atlantic. 展开更多
关键词 abrupt climate change coupled climate model Atlantic Meridional overturning Circulation freshwater forcing HOLOCENE
下载PDF
Comparison between the seismic response of 2D and 3D models of rigid blocks 被引量:1
19
作者 Angelo Di Egidio Daniele Zulli Alessandro Contento 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2014年第1期151-162,共12页
A three-dimensional rigid body on the shape of a parallelepiped is modelled in order to rock on a side or a vertex of the base,in order to evaluate the seismic response of rigid blocks lying on a horizontal support.Th... A three-dimensional rigid body on the shape of a parallelepiped is modelled in order to rock on a side or a vertex of the base,in order to evaluate the seismic response of rigid blocks lying on a horizontal support.The center of mass of the body is considered as eccentric with respect to its geometric center.As seismic input,three Italian recorded accelerograms,with different spectral content,are used.The study is mainly conducted to highlight the differences between the seismic response of 2D and 3D models of rigid blocks,with the aim to understand if,in some cases,the use of the 3D model of rigid block is required to obtain safer results.In fact,the outcomes show that in some ranges of the geometrical and mechanical parameters that characterize the excitation and the body,a two-dimensional model,which is not able to consider the 3D rocking on a vertex,can provide unsafe results.In particular,it is found that the overturning process of the three-dimensional block can occur under excitations which are lower than those which overturn a corresponding two-dimensional block. 展开更多
关键词 seismic excitation 3D rigid block rectangular base ROCKING overturning
下载PDF
Spatial and seasonal variability of global ocean diapycnal transport inferred from Argo profiles
20
作者 HUANG Chao XU Yongsheng 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2019年第2期498-512,共15页
The global diapycnal transport in the ocean interior is one of the significant branches to return the deep water back toward near-surface. However, the amount of the diapycnal transport and the seasonal variations are... The global diapycnal transport in the ocean interior is one of the significant branches to return the deep water back toward near-surface. However, the amount of the diapycnal transport and the seasonal variations are not determined yet. This paper estimates the dissipation rate and the associated diapycnal transports at 500 m, 750 m and 1 000 m depth throughout the global ocean from the wide-spread Argo profiles, using the finescale parameterizations and classic advection-diff usion balance. The net upwelling is ~5.2±0.81 Sv (Sverdrup) which is approximately one fifth in magnitude of the formation of the deep water. The Southern Ocean is the major region with the upward diapycnal transport, while the downwelling emerges mainly in the northern North Atlantic. The upwelling in the Southern Ocean accounts for over 50% of the amount of the global summation. The seasonal cycle is obvious at 500 m and vanishes with depth, indicating the energy source at surface. The enhancement of diapycnal transport occurs at 1000min the Southern Ocean, which is pertinent with the internal wave generation due to the interaction between the robust deep-reaching flows and the rough topography. Our estimates of the diapycnal transport in the ocean interior have implications for the closure of the oceanic energy budget and the understanding of global Meridional Overturning Circulation. 展开更多
关键词 DISSIPATION rate diapycnal TRANSPORT UPWELLING MERIDIONAL overturning circulation
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部