Hydrogen is seen as a key element for the transition from a fossil fuel based economy to a renewable, sustainable economy. Hydrogen can be used either directly as an energy carrier or as a feedstock for the reduction ...Hydrogen is seen as a key element for the transition from a fossil fuel based economy to a renewable, sustainable economy. Hydrogen can be used either directly as an energy carrier or as a feedstock for the reduction of CO2 to synthetic hydrocarbons. Hydrogen can be produced by electrolysis, decomposing water in oxygen and hydrogen. This paper presents an overview of the three major electrolysis technologies: acidic (PEM), alkaline (AEL) and solid oxide electrolysis (SOEC). An updated list of existing electrolysers and commercial providers is provided. Most interestingly, the specific prices of commercial devices are also given when available. Despite tremendous development of the PEM technology in the past decades, the largest and most efficient electrolysers are still alkaline. Thus, this technology is expected to play a key role in the transition to the hydrogen society. A detailed description of the components in an alkaline electrolyser and an analytical model of the process are provided. The analytical model allows investigating the influence of the different operating parameters on the efficiency. Specifically, the effect of temperature on the electrolyte conductivity—and thus on the efficiency—is analyzed. It is found that in the typical range of operating temperatures for alkaline electrolysers of 65°C - 220°C, the efficiency varies by up to 3.5 percentage points, increasing from 80% to 83.5% at 65°C and 220°C, respectively.展开更多
Background: The desire to improve the quality of health care for an aging population with multiple chronic diseases is fostering a rapid growth in interprofessional team care, supported by health professionals, govern...Background: The desire to improve the quality of health care for an aging population with multiple chronic diseases is fostering a rapid growth in interprofessional team care, supported by health professionals, governments, businesses and public institutions. However, the weight of evidence measuring the impact of team care on patient and health system outcomes has not, heretofore, been clear. To address this deficiency, we evaluated published evidence for the clinical effectiveness of team care within a chronic disease management context in a systematic overview. Methods: A search strategy was built for Medline using medical subject headings and other relevant keywords. After testing for performance, the search strategy was adapted to other databases (Cinhal, Cochrane, Embase, PsychInfo) using their specific descriptors. The searches were limited to reviews published between 1996 and 2011, in English and French languages. The results were analyzed by the number of studies favouring team intervention, based on the direction of effect and statistical significance for all reported outcomes. Results: Sixteen systematic and 7 narrative reviews were included. Diseases most frequently targeted were depression, followed by heart failure, diabetes and mental disorders. Effectiveness outcome measures most commonly used were clinical endpoints, resource utilization (e.g., emergency room visits, hospital admissions), costs, quality of life and medication adherence. Briefly, while improved clinical and resource utilization endpoints were commonly reported as positive outcomes, mixed directional results were often found among costs, medication adherence, mortality and patient satisfaction outcomes. Conclusions: We conclude that, although suggestive of some specific benefits, the overall weight of evidence for team care efficacy remains equivocal. Further studies that examine the causal interactions between multidisciplinary team care and clinical and economic outcomes of disease management are needed to more accurately assess its net program efficacy and population effectiveness.展开更多
文摘Hydrogen is seen as a key element for the transition from a fossil fuel based economy to a renewable, sustainable economy. Hydrogen can be used either directly as an energy carrier or as a feedstock for the reduction of CO2 to synthetic hydrocarbons. Hydrogen can be produced by electrolysis, decomposing water in oxygen and hydrogen. This paper presents an overview of the three major electrolysis technologies: acidic (PEM), alkaline (AEL) and solid oxide electrolysis (SOEC). An updated list of existing electrolysers and commercial providers is provided. Most interestingly, the specific prices of commercial devices are also given when available. Despite tremendous development of the PEM technology in the past decades, the largest and most efficient electrolysers are still alkaline. Thus, this technology is expected to play a key role in the transition to the hydrogen society. A detailed description of the components in an alkaline electrolyser and an analytical model of the process are provided. The analytical model allows investigating the influence of the different operating parameters on the efficiency. Specifically, the effect of temperature on the electrolyte conductivity—and thus on the efficiency—is analyzed. It is found that in the typical range of operating temperatures for alkaline electrolysers of 65°C - 220°C, the efficiency varies by up to 3.5 percentage points, increasing from 80% to 83.5% at 65°C and 220°C, respectively.
文摘Background: The desire to improve the quality of health care for an aging population with multiple chronic diseases is fostering a rapid growth in interprofessional team care, supported by health professionals, governments, businesses and public institutions. However, the weight of evidence measuring the impact of team care on patient and health system outcomes has not, heretofore, been clear. To address this deficiency, we evaluated published evidence for the clinical effectiveness of team care within a chronic disease management context in a systematic overview. Methods: A search strategy was built for Medline using medical subject headings and other relevant keywords. After testing for performance, the search strategy was adapted to other databases (Cinhal, Cochrane, Embase, PsychInfo) using their specific descriptors. The searches were limited to reviews published between 1996 and 2011, in English and French languages. The results were analyzed by the number of studies favouring team intervention, based on the direction of effect and statistical significance for all reported outcomes. Results: Sixteen systematic and 7 narrative reviews were included. Diseases most frequently targeted were depression, followed by heart failure, diabetes and mental disorders. Effectiveness outcome measures most commonly used were clinical endpoints, resource utilization (e.g., emergency room visits, hospital admissions), costs, quality of life and medication adherence. Briefly, while improved clinical and resource utilization endpoints were commonly reported as positive outcomes, mixed directional results were often found among costs, medication adherence, mortality and patient satisfaction outcomes. Conclusions: We conclude that, although suggestive of some specific benefits, the overall weight of evidence for team care efficacy remains equivocal. Further studies that examine the causal interactions between multidisciplinary team care and clinical and economic outcomes of disease management are needed to more accurately assess its net program efficacy and population effectiveness.