This paper creates a land economy model under the framework of the consistent growth theory to investigate the impacts of different forms of ownership on longterm economic equilibrium.As demonstrated under the model,i...This paper creates a land economy model under the framework of the consistent growth theory to investigate the impacts of different forms of ownership on longterm economic equilibrium.As demonstrated under the model,in an economy of private ownership that allows the free transfer of land,land gradually becomes concentrated in the hands of a few;income growth deriving from technological progress merely contributes to the wealth and consumption of landowners;landless workers will struggle at the level of subsistence.An economy of public or collective ownership that forbids the transfer of land can ensure basic social equity.However,in a collective economy without a contract system,population is likely to grow excessively and thus requires external restraint.The conclusions of our model suggest that the long-term welfare and growth effect under collective ownership with a contract system is superior to those under private ownership and pure public ownership.展开更多
商用车碳减排已经成为我国道路交通减碳的关键瓶颈,新能源商用车被视作重型商用车减碳的重要途径,但是新能源商用车的市场渗透率远低于其他车辆部门;但与此同时,现阶段新能源零碳商用车的发展还存在着应用场景复杂、技术路径多样化、同...商用车碳减排已经成为我国道路交通减碳的关键瓶颈,新能源商用车被视作重型商用车减碳的重要途径,但是新能源商用车的市场渗透率远低于其他车辆部门;但与此同时,现阶段新能源零碳商用车的发展还存在着应用场景复杂、技术路径多样化、同时成本较高的显著的瓶颈。本研究构建了基于新能源汽车总拥有成本(total cost of ownership,TCO)、使用便利性等因素的多元Logit离散选择模型——零碳商用车市场演进模型(discrete choice-based market evolution of green truck model,DC-MEGT),使用自下向上的方法计算TCO,并将车辆使用便利性使用补能时间成本进行货币化量化,构建综合效用函数对纯电动车、燃料电池汽车及零碳燃料等不同动力类型从目前到2060年的市场渗透率演进情况进行预测分析。研究以重型长途牵引场景为例进行分析,结果表明2060年主要的技术路径包括燃料电池汽车、纯电动车、天然气及柴油车,占比分别为48%、28%、12%和10%。政策推广、技术进步、商业模式等因素的不确定性会引发纯电动车和燃料电池汽车2060年市场份额17%~19%的波动。展开更多
This paper reaches a recommendation for the 10-year e-bus transition roadmap for New York City. The lifecycle model of emission reduction demonstrates the ecological and financial impacts of a complete transition from...This paper reaches a recommendation for the 10-year e-bus transition roadmap for New York City. The lifecycle model of emission reduction demonstrates the ecological and financial impacts of a complete transition from the current diesel bus fleet to an all-electric bus fleet in New York City by 2033. This study focuses on the NOx pollution, which is the highest among all major cities by Environmental Protection Agency (EPA) and greenhouse gases (GHG) with annual emissions of over five million tons. Our model predicts that switching to an all-electric bus fleet will cut GHG emissions by over 390,000 tons and NOx emissions by over 1300 tons annually, in addition to other pollutants such as VOCs and PM 2.5. yielding an annual economic benefit of over 75.94 million USD. This aligns with the city mayor office’s initiative of achieving total carbon neutrality. We further model an optimized transition roadmap that balances ecological and long-term benefits against the costs of the transition, emphasizing feasibility and alignment with the natural replacement cycle of existing buses, ensuring a steady budgeting pattern to minimize interruptions and resistance. Finally, we advocate for collaboration between government agencies, public transportation authorities, and private sectors, including electric buses and charging facility manufacturers, which is essential for fostering innovation and reducing the costs associated with the transition to e-buses.展开更多
基金a result of a study supported by Professor Chen Kunting's innovation team with Zhejiang University of Technologysponsored by the National Natural Science Foundation Projects(Grant No.71273146,71403249)+2 种基金the Key Project of Zhejiang Natural Science Foundation(Grant No.LZ12G03001)the General Project of Natural Science Foundation(Grant No.LY14G030010)sponsored by the"Special Project of Maritime Economy Research"(Grant No.QYJYD1203)of the Research Institute of Regional Economy and Social Development,Ningbo University
文摘This paper creates a land economy model under the framework of the consistent growth theory to investigate the impacts of different forms of ownership on longterm economic equilibrium.As demonstrated under the model,in an economy of private ownership that allows the free transfer of land,land gradually becomes concentrated in the hands of a few;income growth deriving from technological progress merely contributes to the wealth and consumption of landowners;landless workers will struggle at the level of subsistence.An economy of public or collective ownership that forbids the transfer of land can ensure basic social equity.However,in a collective economy without a contract system,population is likely to grow excessively and thus requires external restraint.The conclusions of our model suggest that the long-term welfare and growth effect under collective ownership with a contract system is superior to those under private ownership and pure public ownership.
文摘商用车碳减排已经成为我国道路交通减碳的关键瓶颈,新能源商用车被视作重型商用车减碳的重要途径,但是新能源商用车的市场渗透率远低于其他车辆部门;但与此同时,现阶段新能源零碳商用车的发展还存在着应用场景复杂、技术路径多样化、同时成本较高的显著的瓶颈。本研究构建了基于新能源汽车总拥有成本(total cost of ownership,TCO)、使用便利性等因素的多元Logit离散选择模型——零碳商用车市场演进模型(discrete choice-based market evolution of green truck model,DC-MEGT),使用自下向上的方法计算TCO,并将车辆使用便利性使用补能时间成本进行货币化量化,构建综合效用函数对纯电动车、燃料电池汽车及零碳燃料等不同动力类型从目前到2060年的市场渗透率演进情况进行预测分析。研究以重型长途牵引场景为例进行分析,结果表明2060年主要的技术路径包括燃料电池汽车、纯电动车、天然气及柴油车,占比分别为48%、28%、12%和10%。政策推广、技术进步、商业模式等因素的不确定性会引发纯电动车和燃料电池汽车2060年市场份额17%~19%的波动。
文摘This paper reaches a recommendation for the 10-year e-bus transition roadmap for New York City. The lifecycle model of emission reduction demonstrates the ecological and financial impacts of a complete transition from the current diesel bus fleet to an all-electric bus fleet in New York City by 2033. This study focuses on the NOx pollution, which is the highest among all major cities by Environmental Protection Agency (EPA) and greenhouse gases (GHG) with annual emissions of over five million tons. Our model predicts that switching to an all-electric bus fleet will cut GHG emissions by over 390,000 tons and NOx emissions by over 1300 tons annually, in addition to other pollutants such as VOCs and PM 2.5. yielding an annual economic benefit of over 75.94 million USD. This aligns with the city mayor office’s initiative of achieving total carbon neutrality. We further model an optimized transition roadmap that balances ecological and long-term benefits against the costs of the transition, emphasizing feasibility and alignment with the natural replacement cycle of existing buses, ensuring a steady budgeting pattern to minimize interruptions and resistance. Finally, we advocate for collaboration between government agencies, public transportation authorities, and private sectors, including electric buses and charging facility manufacturers, which is essential for fostering innovation and reducing the costs associated with the transition to e-buses.