Diseases like Alzheimer’s and Parkinson’s diseases are defined by inflammation and the damage neurons undergo due to oxidative stress. A primary reactive oxygen species contributor in the central nervous system, NAD...Diseases like Alzheimer’s and Parkinson’s diseases are defined by inflammation and the damage neurons undergo due to oxidative stress. A primary reactive oxygen species contributor in the central nervous system, NADPH oxidase 4, is viewed as a potential therapeutic touchstone and indicative marker for these ailments. This in-depth review brings to light distinct features of NADPH oxidase 4, responsible for generating superoxide and hydrogen peroxide, emphasizing its pivotal role in activating glial cells, inciting inflammation, and disturbing neuronal functions. Significantly, malfunctioning astrocytes, forming the majority in the central nervous system, play a part in advancing neurodegenerative diseases, due to their reactive oxygen species and inflammatory factor secretion. Our study reveals that aiming at NADPH oxidase 4 within astrocytes could be a viable treatment pathway to reduce oxidative damage and halt neurodegenerative processes. Adjusting NADPH oxidase 4 activity might influence the neuroinflammatory cytokine levels, including myeloperoxidase and osteopontin, offering better prospects for conditions like Alzheimer’s disease and Parkinson’s disease. This review sheds light on the role of NADPH oxidase 4 in neural degeneration, emphasizing its drug target potential, and paving the path for novel treatment approaches to combat these severe conditions.展开更多
Type-B monoamine oxidase inhibitors,encompassing selegiline,rasagiline,and safinamide,are available to treat Parkinson's disease.These drugs ameliorate motor symptoms and improve motor fluctuation in the advanced ...Type-B monoamine oxidase inhibitors,encompassing selegiline,rasagiline,and safinamide,are available to treat Parkinson's disease.These drugs ameliorate motor symptoms and improve motor fluctuation in the advanced stages of the disease.There is also evidence suppo rting the benefit of type-B monoamine oxidase inhibitors on non-motor symptoms of Parkinson's disease,such as mood deflection,cognitive impairment,sleep disturbances,and fatigue.Preclinical studies indicate that type-B monoamine oxidase inhibitors hold a strong neuroprotective potential in Parkinson's disease and other neurodegenerative diseases for reducing oxidative stress and stimulating the production and release of neurotrophic factors,particularly glial cell line-derived neurotrophic factor,which suppo rt dopaminergic neurons.Besides,safinamide may interfere with neurodegenerative mechanisms,countera cting excessive glutamate overdrive in basal ganglia motor circuit and reducing death from excitotoxicity.Due to the dual mechanism of action,the new generation of type-B monoamine oxidase inhibitors,including safinamide,is gaining interest in other neurological pathologies,and many supporting preclinical studies are now available.The potential fields of application concern epilepsy,Duchenne muscular dystrophy,multiple scle rosis,and above all,ischemic brain injury.The purpose of this review is to investigate the preclinical and clinical pharmacology of selegiline,rasagiline,and safinamide in Parkinson's disease and beyond,focusing on possible future therapeutic applications.展开更多
Despite decades of laboratory and clinical trials,breast cancer remains the main cause of cancer-related disease burden in women.Considering the metabolism destruction effect of metformin(Met)and cancer cell starvatio...Despite decades of laboratory and clinical trials,breast cancer remains the main cause of cancer-related disease burden in women.Considering the metabolism destruction effect of metformin(Met)and cancer cell starvation induced by glucose oxidase(GOx),after their efficient delivery to tumor sites,GOx and Met may consume a large amount of glucose and produce sufficient hydrogen peroxide in situ.Herein,a pH-responsive epigallocatechin gallate(EGCG)-conjugated low-molecular-weight chitosan(LC-EGCG,LE)nanoparticle(Met–GOx/Fe@LE NPs)was constructed.The coordination between iron ions(Fe3+)and EGCG in this nanoplatform can enhance the efficacy of chemodynamic therapy via the Fenton reaction.Met–GOx/Fe@LE NPs allow GOx to retain its enzymatic activity while simultaneously improving its stability.Moreover,this pH-responsive nanoplatform presents controllable drug release behavior.An in vivo biodistribution study showed that the intracranial accumulation of GOx delivered by this nanoplatform was 3.6-fold higher than that of the free drug.The in vivo anticancer results indicated that this metabolism destruction/starvation/chemodynamic triple-combination therapy could induce increased apoptosis/death of tumor cells and reduce their proliferation.This triple-combination therapy approach is promising for efficient and targeted cancer treatment.展开更多
Seed vigor is a crucial trait for the direct seeding of rice.Here we examined the genetic regulation of seed vigor traits in rice,including germination index(GI)and germination potential(GP),using a genome-wide associ...Seed vigor is a crucial trait for the direct seeding of rice.Here we examined the genetic regulation of seed vigor traits in rice,including germination index(GI)and germination potential(GP),using a genome-wide association study approach.One major quantitative trait locus,qGI6/qGP6,was identified simultaneously for both GI and GP.The candidate gene encoding the cytochrome c oxidase subunit 5B(OsCOX5B)was validated for qGI6/qGP6.The disruption of OsCOX5B caused the vigor traits to be significantly lower in Oscox5b mutants than in the japonica Nipponbare wild type(WT).Gene co-expression analysis revealed that OsCOX5B influences seed vigor mainly by modulating the tricarboxylic acid cycle process.The glucose levels were significantly higher while the pyruvic acid and adenosine triphosphate levels were significantly lower in Oscox5b mutants than in WT during seed germination.The elite haplotype of OsCOX5B facilitates seed vigor by increasing its expression during seed germination.Thus,we propose that OsCOX5B is a potential target for the breeding of rice varieties with enhanced seed vigor for direct seeding.展开更多
Intracerebral hemorrhage is often accompanied by oxidative stress induced by reactive oxygen species,which causes abnormal mitochondrial function and secondary reactive oxygen species generation.This creates a vicious...Intracerebral hemorrhage is often accompanied by oxidative stress induced by reactive oxygen species,which causes abnormal mitochondrial function and secondary reactive oxygen species generation.This creates a vicious cycle leading to reactive oxygen species accumulation,resulting in progression of the pathological process.Therefore,breaking the cycle to inhibit reactive oxygen species accumulation is critical for reducing neuronal death after intracerebral hemorrhage.Our previous study found that increased expression of nicotinamide adenine dinucleotide phosphate oxidase 4(NADPH oxidase 4,NOX4)led to neuronal apoptosis and damage to the blood-brain barrier after intracerebral hemorrhage.The purpose of this study was to investigate the role of NOX4 in the circle involving the neuronal tolerance to oxidative stress,mitochondrial reactive oxygen species and modes of neuronal death other than apoptosis after intracerebral hemorrhage.We found that NOX4 knockdown by adeno-associated virus(AAV-NOX4)in rats enhanced neuronal tolerance to oxidative stress,enabling them to better resist the oxidative stress caused by intracerebral hemorrhage.Knockdown of NOX4 also reduced the production of reactive oxygen species in the mitochondria,relieved mitochondrial damage,prevented secondary reactive oxygen species accumulation,reduced neuronal pyroptosis and contributed to relieving secondary brain injury after intracerebral hemorrhage in rats.Finally,we used a mitochondria-targeted superoxide dismutase mimetic to explore the relationship between reactive oxygen species and NOX4.The mitochondria-targeted superoxide dismutase mimetic inhibited the expression of NOX4 and neuronal pyroptosis,which is similar to the effect of AAV-NOX4.This indicates that NOX4 is likely to be an important target for inhibiting mitochondrial reactive oxygen species production,and NOX4 inhibitors can be used to alleviate oxidative stress response induced by intracerebral hemorrhage.展开更多
Objective:This is a retrospective observational cohort study.The objective of this retrospective observational cohort study was to evaluate the value of the combined serum D-lactic acid,diamine oxidase(DAO),and endoto...Objective:This is a retrospective observational cohort study.The objective of this retrospective observational cohort study was to evaluate the value of the combined serum D-lactic acid,diamine oxidase(DAO),and endotoxin levels to predict intestinal barrier impairment and gut-derived infection(GDI)in cancer patients.Methods:Cancer patients receiving chemotherapy or palliative care treatment at our hospital were enrolled in the study.The serum concentrations of DAO,D-lactic acid,and endotoxin were determined using the intestinal barrier function biochemical index analysis system.The patients'infection information came from the hospital's Medicom Prescription Automatic Screening System and themedical records.Three hundred fifty-three cancer patients were included in the study(53.8%female,73.7%cancer stage IV,27.8%had bowel obstruction).Results:The total incidence of GDI was 33.4%(118/353).The median length of hospital stay was 16 days for patients with GDI,compared with 7 days for patients without GDI(P<0.001).The media hospitalization costs were¥27,362.35 for patients with GDI compared with¥11,614.08 for patients without GDI(P<0.001).The serum concentrations of DAO,D-lactic acid,and endotoxin were significantly higher in patients with GDI.As malignant bowel obstruction(MBO)worsened,the concentrations of DAO,D-lactic acid,and endotoxin increased.Multivariate logistic regression models revealed that the DAO,endotoxin,IL-6,and C-reactive protein levels were significantly associated with an increased risk of GDI.In addition,we also found a fivefold increased risk of infection in patients withMBO compared with those without bowel obstruction(OR=6.210,P<0.001).All of the areas under the receiver operating characteristic curve(AUCs)for DAO,D-lactate,and endotoxin to predict GDI were<0.7(AUC=0.648,P<0.001;AUC=0.624,P<0.01;AUC=0.620,P<0.01,respectively).However,when the parameters were combined(DAO+D-lactate+endotoxin),the predictive power increased significantly(AUC=0.797,P<0.001).Moreover,combining these intestinal barrier indicators and the presence of MBO had better power to predict GDI than either alone(AUC=0.837,P<0.001).Conclusions:Combining the serum DAO,D-lactic acid,and endotoxin levels was a better predictor of GDI than any of the indicators alone,and combining these with the diagnosis of MBO could further improve the efficacy for predicting GDI.展开更多
The phylogenetic relationships of genera in the subfamily Apaturinae were examined using mtDNA sequence data from 1,471 bp of cytochrome oxidase subunit Ⅰ (COI). The mitochondrial COI gene from a total of 16 specie...The phylogenetic relationships of genera in the subfamily Apaturinae were examined using mtDNA sequence data from 1,471 bp of cytochrome oxidase subunit Ⅰ (COI). The mitochondrial COI gene from a total of 16 species in 11 genera were sequenced to obtain mtDNA data, along with those of 4 species obtained from GenBank, to construct the MP and the NJ trees using Athyma jina, Penthema adelma, Polyura nepenthes, and Charaxes bernardus as outgroups. The transitions at the third codon positions of the COI data set were found saturated, but they were retained for analysis, because they contain the majority of the phylogenetic information. The impacts of equal weight assumptions for all characters in the parsimonious analysis were assessed by potential alternations in clades in response to different transition/transversion weighting schemes. The results indicated four distinct major groups in Apaturinae. Moreover, several well supported and stable clades were found in the Apaturinae. The study also identified undetermined taxon groups whose positions were weakly supported and were subject to changes under different weighting schemes. Within the Apaturinae, the clustering results are approximately identical to the classical morphological classification. The mtDNA data suggest the genus Mimathyma as a monophyletic group. Lelecella limenitoides and Dilipa fenestra have close relationship with very strong support in all phylogenetic trees. It also supports the taxonomic revision of removing several species from Apatura to other genera, namely Mimathyma schrenckii, M. chevana, M. nycteis, Chitoria subcaerulea, C. fasciola, C. pallas, and Helcyra subalba.展开更多
[Objective] The aim was to explore the phylogenetic relationships among four subspecies of the genus Locusta.[Method] The sequences of three subunits of cytochrome oxidase of Locusta migratoria tibetensis and Locusta ...[Objective] The aim was to explore the phylogenetic relationships among four subspecies of the genus Locusta.[Method] The sequences of three subunits of cytochrome oxidase of Locusta migratoria tibetensis and Locusta migratoria manilensis were amplified and sequenced(COⅠ 1 539 bp,COⅡ 684 bp,CO Ⅲ 792 bp,with the total of 3 015 bp).The corresponding sequenses of Locusta migratoria migratoria and Locusta migratoria migratorioides were obtained from GenBank and constructed a multiple alignment.Phylogenic trees of four subspecies of L.migratoria were constructed by Neighbor-Joining,Maximum-parsimony and Bayesian,respectively.[Result] The average content of A + T in three subunits of four subspecies was 69.57%;the third site of codon showed the highest A + T content,and the COⅠ had the highest A + T content(87.6%);The nucleotide substitution mainly occurred at the third site of codon,and the nucleotide replacement rate of CO Ⅱ was the highest.The second site of codon was conservative,so the replacement rate was in the range of 5.9%-15%.The start codon of COⅠ was CCG or ACG.Genetic distances among four subspecies were ranged from 0.001 to 0.076.The relationship between L.m.tibetensis and Locusta migratoria manilensis was the closest,followed by L.m.migratorioides and L.m.migratorioides,while the genetic distance between L.m.tibetensis and L.m.migratorioides was the largest.[Conclusion] The phylogenetic relationships among four subspecies of Locusta migratoria is L.m.tibetensis,L.m.manilensis,L.m.migratoria,L.m.migratorioides.展开更多
NAD(P)H oxidases were detected in suspension cultured cells of ginseng (Panax ginseng C. A. Meyer). The activities of these enzymes were induced by an elicitor (Cle) extracted from cell walls of Col-letotrichum lagera...NAD(P)H oxidases were detected in suspension cultured cells of ginseng (Panax ginseng C. A. Meyer). The activities of these enzymes were induced by an elicitor (Cle) extracted from cell walls of Col-letotrichum lagerarium. In addition, Cle induced an oxidative burst and enhanced the synthesis of saponin, activity of phenylalanine ammonialyase (PAL) , accumulation of chalcone synthase (CHS) and the transcription of a hydroxyproline-rich glycoprotein gene ( hrgp ) . Pre-treatments with DPI and quinacrine (two inhibitors of mammalian neutrophil plasma membrane NADPH oxidase) for 30 min prior to Cle addition blocked the NAD(P)H oxidase activity induced by Cle. These inhibitors also inhibited the release of H2C2, the synthesis of saponin, PAL activity and CHS accumulation. Our data revealed homology between plasma membrane NAD(P)H oxidases of mammalian neutrophil cells and ginseng suspension cells. They also indicated that deactivated NAD(P)H oxidases catalysed the release of H2O2 and that H2O2 was functioning as a second messenger stimulating PAL activity, saponin synthesis and hrgp transcription. Elevations of Ca2 + and protein phos-phorylation/dephosphorylation were required for this defense process. We propose that NAD(P)H oxidases mediate the processes of Cle-induced defense responses in ginseng suspensions, and postulate the existence of a signalling cascade including extracellular Cle stimulation, activation of plasma membrane NAD(P)H oxidases, release of H2O2, and the intracellular responses of metabolism and gene transcription in ginseng suspension cells.展开更多
Endogenous elicitor, termed cellulase-degraded cell wall (CDW), was prepared from the cell wall of suspension-cultured ginseng (Panax ginseng C.A. Meyer) cells via cellulase degradation. CDW activated the NADPH oxidas...Endogenous elicitor, termed cellulase-degraded cell wall (CDW), was prepared from the cell wall of suspension-cultured ginseng (Panax ginseng C.A. Meyer) cells via cellulase degradation. CDW activated the NADPH oxidase activity of isolated plasma membranes and stimulated in vivo H2O2 generation in ginseng cell suspensions. CDW also increased the activity of phenylalanine ammonia lyase (PAL), expression of a P. ginseng squalene epoxidase (sqe) gene and saponin synthesis. NADPH oxidase inhibitors inhibited both in vitro NADPH oxidase activity and in vivo H2O2 generation. Induction of PAL activity, saponin synthesis and sqe gene expression were all inhibited by such inhibitor treatments and reduced by incubation with catalase and HA scavengers. These data indicate that activation of NADPH oxidase and generation of H2O2 are essential signalling events mediating defence responses induced by the endogenous elicitor(s) present in CDW.展开更多
Rhizopus rot of peach fruits could be significantly suppressed by Pichia membranefaciens. Polyphenol oxidase (PPO), peroxidase (POD) and phenylalanine ammonium-lyase (PAL) activities induced by inoculation with P. mem...Rhizopus rot of peach fruits could be significantly suppressed by Pichia membranefaciens. Polyphenol oxidase (PPO), peroxidase (POD) and phenylalanine ammonium-lyase (PAL) activities induced by inoculation with P. membrane faciens or R. stolonifer were studied in postharvest peach fruits. The activities of PPO and PAL in peaches increased significantly after being inoculated with P. membrane faciens + R. stolonifer by 24 h, the activities maintained at a high level throughout the experiment. Under the condition of infected with R. stolonifer alone, activity of PPO and PAL could also increased, but the levels were lower than those treated with P. membrane faciens+ R. stolonifer. However, fruits inoculaed with P. membrane-faciens + R. stolonifer or R. stolonifer alone did not stimulated POD activity. The results suggest that the activation of these defense enzymes is involved in the action of P. membrane faciens against R. stolonifer.展开更多
Objective The roles of cerebrovascular oxidative stress in vascular functional remodeling have been described in hindlimb-unweighting (HU) rats. However, the underlying mechanism remains to be established. Methods W...Objective The roles of cerebrovascular oxidative stress in vascular functional remodeling have been described in hindlimb-unweighting (HU) rats. However, the underlying mechanism remains to be established. Methods We investigated the generation of vascular reactive oxygen species (ROS), Nox2/Nox4 protein and mRNA levels, NADPH oxidase activity, and manganese superoxide dismutase (MnSOD) and glutathione peroxidase-1 (GPx-1) mRNA levels in cerebral and mesenteric smooth muscle cells (VSMCs) of HU rats. Results ROS production increased in cerebral but not in mesenteric VSMCs of HU rats compared with those in control rats. Nox2 and Nox4 protein and mRNA levels were increased significantly but MnSOD/GPx-1 mRNA levels decreased in HU rat cerebral arteries but not in mesenteric arteries. NADPH oxidases were activated significantly more in cerebral but not in mesenteric arteries of HU rats. NADPH oxidase inhibition with apocynin attenuated cerebrovascular ROS production and partially restored Nox2/Nox4 protein and mRNA levels, NADPH oxidase activity, and MnSOD/GPx-1 mRNA levels in cerebral VSMCs of HU rats. Conclusion These results suggest that vascular NADPH oxidases regulate cerebrovascular redox status and participate in vascular oxidative stress injury during simulated microgravity.展开更多
Ethylene plays an extensive role in plant growth and development.. 1-aminocyclopropane-1-carboxylate (ACC) oxidase (ACO) is the key enzyme in ethylene biosynthesis. In this study, a 354 g DNA and a 213 bp cDNA bas...Ethylene plays an extensive role in plant growth and development.. 1-aminocyclopropane-1-carboxylate (ACC) oxidase (ACO) is the key enzyme in ethylene biosynthesis. In this study, a 354 g DNA and a 213 bp cDNA base pair (bp) candidate fragment was amplified from pepper with primers derived from the ACO sequence (AJ011109) reported by Ernesto. The putative new gene was analyzed by bioinformatics tools.展开更多
An optical fiber bienzyme sensor based on the luminol chemiluminescent reaction was developed and demonstrated to be sensitive to glucose. Glucose oxidase(GOD) and horseradish peroxidase(HRP) were co-immobilized by mi...An optical fiber bienzyme sensor based on the luminol chemiluminescent reaction was developed and demonstrated to be sensitive to glucose. Glucose oxidase(GOD) and horseradish peroxidase(HRP) were co-immobilized by microencapsulation in a sol-gel film derived from tetraethyl orthosilicate(TEOS). The calibration plots for glucose were established by the optical fiber glucose sensor fabricated by attaching the bienzyme silica gel onto the glass window of the fiber bundle. The linear range was 0 2-2 mmol/L and the detection limit was approximately 0 12 mmol/L. The relative standard deviation was 5.3% ( n =6). The proposed biosensor was applied to glucose assay in ofloxacin injection successfully.展开更多
Cyclic voltammetry is employed to demonstrate feasibility of direct electron transfer of glucose oxidase and D amino acid oxidase at a glassy carbon electrode in organic media. The reversible slight conformational ch...Cyclic voltammetry is employed to demonstrate feasibility of direct electron transfer of glucose oxidase and D amino acid oxidase at a glassy carbon electrode in organic media. The reversible slight conformational change of glucose oxidase is observed by changing 0.1 mol/L phosphate buffer to acetonitrile containing 10% v/v of water and 0.05 mol/L tetrabutyalammonium perchlorate, and vice versa.展开更多
The generation of cellular energy in the form of ATP occurs mainly in mitochondria by oxidative phosphorylation.Cytochrome c oxidase(CytOx),the oxygen accepting and rate-limiting step of the respiratory chain,regulate...The generation of cellular energy in the form of ATP occurs mainly in mitochondria by oxidative phosphorylation.Cytochrome c oxidase(CytOx),the oxygen accepting and rate-limiting step of the respiratory chain,regulates the supply of variable ATP demands in cells by“allosteric ATP-inhibition of CytOx.”This mechanism is based on inhibition of oxygen uptake of CytOx at high ATP/ADP ratios and low ferrocytochrome c concentrations in the mitochondrial matrix via cooperative interaction of the two substrate binding sites in dimeric CytOx.The mechanism keeps mitochondrial membrane potentialΔΨm and reactive oxygen species(ROS)formation at low healthy values.Stress signals increase cytosolic calcium leading to Ca^2+-dependent dephosphorylation of CytOx subunit I at the cytosolic side accompanied by switching off the allosteric ATPinhibition and monomerization of CytOx.This is followed by increase ofΔΨm and formation of ROS.A hypothesis is presented suggesting a dynamic change of binding of NDUFA4,originally identified as a subunit of complex I,between monomeric CytOx(active state with highΔΨm,high ROS and low efficiency)and complex I(resting state with lowΔΨm,low ROS and high efficiency).展开更多
BACKGROUND: Plasma D(-)-lactate and diamine oxidase (DAO) can reflect patients' intestinal mucosal condition. We evaluated the changes of plasma D (-)-lactate, DAO and endotoxin activities and their significance i...BACKGROUND: Plasma D(-)-lactate and diamine oxidase (DAO) can reflect patients' intestinal mucosal condition. We evaluated the changes of plasma D (-)-lactate, DAO and endotoxin activities and their significance in patients with liver cirrhosis. METHODS: Fifty liver cirrhosis patients were enrolled into experimental group and 30 healthy people into control group. The plasma levels of D(-)-lactate, DAO and endo- toxin were detected spectrophotographically. RESULTS: The level of D(-)-lactate was significantly high- er in the experimental group than that in the control group (P<0.01). Significant differences of D (-)-lactate levels were observed in Child-Pugh subgroups of the experimen- tal group (P <0. 01). The level of DAO was significantly higher in the experimental group than that in the control group (P <0.01), but the level of DAO in Child-Pugh sub- group C was significantly lower than that in Child-Pugh subgroup B (P<0.01). The level of endotoxin was signifi- cantly increased in the experimental group except Child Pugh subgroup A (P<0.01). The plasma levels of D(-) lactate, DAO and endotoxin were positively correlated with each other (P<0.01). CONCLUSIONS: The data suggest that both plasma D(-) lactate and DAO activity are sensitive markers for early diagnosis of gut failure and endotoxemia in patients with liver cirrhosis. The impairment of intestinal barrier func- tion may be one of the critical reasons for deterioration of liver cirrhosis.展开更多
基金supported by the National Research Foundation of the Republic of Korea 2018R1D1A3B07047960the Soonchunhyang University Research Fund(to SSY).
文摘Diseases like Alzheimer’s and Parkinson’s diseases are defined by inflammation and the damage neurons undergo due to oxidative stress. A primary reactive oxygen species contributor in the central nervous system, NADPH oxidase 4, is viewed as a potential therapeutic touchstone and indicative marker for these ailments. This in-depth review brings to light distinct features of NADPH oxidase 4, responsible for generating superoxide and hydrogen peroxide, emphasizing its pivotal role in activating glial cells, inciting inflammation, and disturbing neuronal functions. Significantly, malfunctioning astrocytes, forming the majority in the central nervous system, play a part in advancing neurodegenerative diseases, due to their reactive oxygen species and inflammatory factor secretion. Our study reveals that aiming at NADPH oxidase 4 within astrocytes could be a viable treatment pathway to reduce oxidative damage and halt neurodegenerative processes. Adjusting NADPH oxidase 4 activity might influence the neuroinflammatory cytokine levels, including myeloperoxidase and osteopontin, offering better prospects for conditions like Alzheimer’s disease and Parkinson’s disease. This review sheds light on the role of NADPH oxidase 4 in neural degeneration, emphasizing its drug target potential, and paving the path for novel treatment approaches to combat these severe conditions.
文摘Type-B monoamine oxidase inhibitors,encompassing selegiline,rasagiline,and safinamide,are available to treat Parkinson's disease.These drugs ameliorate motor symptoms and improve motor fluctuation in the advanced stages of the disease.There is also evidence suppo rting the benefit of type-B monoamine oxidase inhibitors on non-motor symptoms of Parkinson's disease,such as mood deflection,cognitive impairment,sleep disturbances,and fatigue.Preclinical studies indicate that type-B monoamine oxidase inhibitors hold a strong neuroprotective potential in Parkinson's disease and other neurodegenerative diseases for reducing oxidative stress and stimulating the production and release of neurotrophic factors,particularly glial cell line-derived neurotrophic factor,which suppo rt dopaminergic neurons.Besides,safinamide may interfere with neurodegenerative mechanisms,countera cting excessive glutamate overdrive in basal ganglia motor circuit and reducing death from excitotoxicity.Due to the dual mechanism of action,the new generation of type-B monoamine oxidase inhibitors,including safinamide,is gaining interest in other neurological pathologies,and many supporting preclinical studies are now available.The potential fields of application concern epilepsy,Duchenne muscular dystrophy,multiple scle rosis,and above all,ischemic brain injury.The purpose of this review is to investigate the preclinical and clinical pharmacology of selegiline,rasagiline,and safinamide in Parkinson's disease and beyond,focusing on possible future therapeutic applications.
基金the National Natural Science Foundation of China(Grant Nos.:82102767 and 82002655)the 1·3·5 Project for Disciplines of Excellence-Clinical Research Incubation Project,West China Hospital,Sichuan University,China(Grant No.:2020HXFH036)+2 种基金the Knowledge Innovation Program of the Chinese Academy of Sciences,China(Grant No.:JH2022007)the Cultivation Project of Basic Medical College of Xinxiang Medical University,China(Grant No.:JCYXYKY202112)the Key Project of Science and Technology of Henan Province,China(Grant No.:222102310260).
文摘Despite decades of laboratory and clinical trials,breast cancer remains the main cause of cancer-related disease burden in women.Considering the metabolism destruction effect of metformin(Met)and cancer cell starvation induced by glucose oxidase(GOx),after their efficient delivery to tumor sites,GOx and Met may consume a large amount of glucose and produce sufficient hydrogen peroxide in situ.Herein,a pH-responsive epigallocatechin gallate(EGCG)-conjugated low-molecular-weight chitosan(LC-EGCG,LE)nanoparticle(Met–GOx/Fe@LE NPs)was constructed.The coordination between iron ions(Fe3+)and EGCG in this nanoplatform can enhance the efficacy of chemodynamic therapy via the Fenton reaction.Met–GOx/Fe@LE NPs allow GOx to retain its enzymatic activity while simultaneously improving its stability.Moreover,this pH-responsive nanoplatform presents controllable drug release behavior.An in vivo biodistribution study showed that the intracranial accumulation of GOx delivered by this nanoplatform was 3.6-fold higher than that of the free drug.The in vivo anticancer results indicated that this metabolism destruction/starvation/chemodynamic triple-combination therapy could induce increased apoptosis/death of tumor cells and reduce their proliferation.This triple-combination therapy approach is promising for efficient and targeted cancer treatment.
基金supported by the Hainan Province Science and Technology Special Fund,China(ZDYF2023XDNY086)the Project of Sanya Yazhou Bay Science and Technology City,China(SCKJ-JYRC-2022-87)+2 种基金the Natural Science Foundation of Guangdong Province,China(2023A1515012052 and 2023A1515012092)the Guangzhou Science and Technology Plan Project,China(2023A04J1452 and 2023A04J0749)the Double First-class Discipline Promotion Project,China(2021B10564001).
文摘Seed vigor is a crucial trait for the direct seeding of rice.Here we examined the genetic regulation of seed vigor traits in rice,including germination index(GI)and germination potential(GP),using a genome-wide association study approach.One major quantitative trait locus,qGI6/qGP6,was identified simultaneously for both GI and GP.The candidate gene encoding the cytochrome c oxidase subunit 5B(OsCOX5B)was validated for qGI6/qGP6.The disruption of OsCOX5B caused the vigor traits to be significantly lower in Oscox5b mutants than in the japonica Nipponbare wild type(WT).Gene co-expression analysis revealed that OsCOX5B influences seed vigor mainly by modulating the tricarboxylic acid cycle process.The glucose levels were significantly higher while the pyruvic acid and adenosine triphosphate levels were significantly lower in Oscox5b mutants than in WT during seed germination.The elite haplotype of OsCOX5B facilitates seed vigor by increasing its expression during seed germination.Thus,we propose that OsCOX5B is a potential target for the breeding of rice varieties with enhanced seed vigor for direct seeding.
基金supported by the National Natural Science Foundation of China,No.81671125the Natural Science Foundation of Guangdong Province,No.2021A1515011115Guangzhou Science and Technology Project,No.202102010346(all to YZC)。
文摘Intracerebral hemorrhage is often accompanied by oxidative stress induced by reactive oxygen species,which causes abnormal mitochondrial function and secondary reactive oxygen species generation.This creates a vicious cycle leading to reactive oxygen species accumulation,resulting in progression of the pathological process.Therefore,breaking the cycle to inhibit reactive oxygen species accumulation is critical for reducing neuronal death after intracerebral hemorrhage.Our previous study found that increased expression of nicotinamide adenine dinucleotide phosphate oxidase 4(NADPH oxidase 4,NOX4)led to neuronal apoptosis and damage to the blood-brain barrier after intracerebral hemorrhage.The purpose of this study was to investigate the role of NOX4 in the circle involving the neuronal tolerance to oxidative stress,mitochondrial reactive oxygen species and modes of neuronal death other than apoptosis after intracerebral hemorrhage.We found that NOX4 knockdown by adeno-associated virus(AAV-NOX4)in rats enhanced neuronal tolerance to oxidative stress,enabling them to better resist the oxidative stress caused by intracerebral hemorrhage.Knockdown of NOX4 also reduced the production of reactive oxygen species in the mitochondria,relieved mitochondrial damage,prevented secondary reactive oxygen species accumulation,reduced neuronal pyroptosis and contributed to relieving secondary brain injury after intracerebral hemorrhage in rats.Finally,we used a mitochondria-targeted superoxide dismutase mimetic to explore the relationship between reactive oxygen species and NOX4.The mitochondria-targeted superoxide dismutase mimetic inhibited the expression of NOX4 and neuronal pyroptosis,which is similar to the effect of AAV-NOX4.This indicates that NOX4 is likely to be an important target for inhibiting mitochondrial reactive oxygen species production,and NOX4 inhibitors can be used to alleviate oxidative stress response induced by intracerebral hemorrhage.
文摘Objective:This is a retrospective observational cohort study.The objective of this retrospective observational cohort study was to evaluate the value of the combined serum D-lactic acid,diamine oxidase(DAO),and endotoxin levels to predict intestinal barrier impairment and gut-derived infection(GDI)in cancer patients.Methods:Cancer patients receiving chemotherapy or palliative care treatment at our hospital were enrolled in the study.The serum concentrations of DAO,D-lactic acid,and endotoxin were determined using the intestinal barrier function biochemical index analysis system.The patients'infection information came from the hospital's Medicom Prescription Automatic Screening System and themedical records.Three hundred fifty-three cancer patients were included in the study(53.8%female,73.7%cancer stage IV,27.8%had bowel obstruction).Results:The total incidence of GDI was 33.4%(118/353).The median length of hospital stay was 16 days for patients with GDI,compared with 7 days for patients without GDI(P<0.001).The media hospitalization costs were¥27,362.35 for patients with GDI compared with¥11,614.08 for patients without GDI(P<0.001).The serum concentrations of DAO,D-lactic acid,and endotoxin were significantly higher in patients with GDI.As malignant bowel obstruction(MBO)worsened,the concentrations of DAO,D-lactic acid,and endotoxin increased.Multivariate logistic regression models revealed that the DAO,endotoxin,IL-6,and C-reactive protein levels were significantly associated with an increased risk of GDI.In addition,we also found a fivefold increased risk of infection in patients withMBO compared with those without bowel obstruction(OR=6.210,P<0.001).All of the areas under the receiver operating characteristic curve(AUCs)for DAO,D-lactate,and endotoxin to predict GDI were<0.7(AUC=0.648,P<0.001;AUC=0.624,P<0.01;AUC=0.620,P<0.01,respectively).However,when the parameters were combined(DAO+D-lactate+endotoxin),the predictive power increased significantly(AUC=0.797,P<0.001).Moreover,combining these intestinal barrier indicators and the presence of MBO had better power to predict GDI than either alone(AUC=0.837,P<0.001).Conclusions:Combining the serum DAO,D-lactic acid,and endotoxin levels was a better predictor of GDI than any of the indicators alone,and combining these with the diagnosis of MBO could further improve the efficacy for predicting GDI.
基金This work was supported by National Natural Science Foundation of China (No. 30570247)the Natural Science Foundation of Shanxi Province (No. 2003-1087)
文摘The phylogenetic relationships of genera in the subfamily Apaturinae were examined using mtDNA sequence data from 1,471 bp of cytochrome oxidase subunit Ⅰ (COI). The mitochondrial COI gene from a total of 16 species in 11 genera were sequenced to obtain mtDNA data, along with those of 4 species obtained from GenBank, to construct the MP and the NJ trees using Athyma jina, Penthema adelma, Polyura nepenthes, and Charaxes bernardus as outgroups. The transitions at the third codon positions of the COI data set were found saturated, but they were retained for analysis, because they contain the majority of the phylogenetic information. The impacts of equal weight assumptions for all characters in the parsimonious analysis were assessed by potential alternations in clades in response to different transition/transversion weighting schemes. The results indicated four distinct major groups in Apaturinae. Moreover, several well supported and stable clades were found in the Apaturinae. The study also identified undetermined taxon groups whose positions were weakly supported and were subject to changes under different weighting schemes. Within the Apaturinae, the clustering results are approximately identical to the classical morphological classification. The mtDNA data suggest the genus Mimathyma as a monophyletic group. Lelecella limenitoides and Dilipa fenestra have close relationship with very strong support in all phylogenetic trees. It also supports the taxonomic revision of removing several species from Apatura to other genera, namely Mimathyma schrenckii, M. chevana, M. nycteis, Chitoria subcaerulea, C. fasciola, C. pallas, and Helcyra subalba.
基金Supported by National Natural Science Foundation of China(30770263)~~
文摘[Objective] The aim was to explore the phylogenetic relationships among four subspecies of the genus Locusta.[Method] The sequences of three subunits of cytochrome oxidase of Locusta migratoria tibetensis and Locusta migratoria manilensis were amplified and sequenced(COⅠ 1 539 bp,COⅡ 684 bp,CO Ⅲ 792 bp,with the total of 3 015 bp).The corresponding sequenses of Locusta migratoria migratoria and Locusta migratoria migratorioides were obtained from GenBank and constructed a multiple alignment.Phylogenic trees of four subspecies of L.migratoria were constructed by Neighbor-Joining,Maximum-parsimony and Bayesian,respectively.[Result] The average content of A + T in three subunits of four subspecies was 69.57%;the third site of codon showed the highest A + T content,and the COⅠ had the highest A + T content(87.6%);The nucleotide substitution mainly occurred at the third site of codon,and the nucleotide replacement rate of CO Ⅱ was the highest.The second site of codon was conservative,so the replacement rate was in the range of 5.9%-15%.The start codon of COⅠ was CCG or ACG.Genetic distances among four subspecies were ranged from 0.001 to 0.076.The relationship between L.m.tibetensis and Locusta migratoria manilensis was the closest,followed by L.m.migratorioides and L.m.migratorioides,while the genetic distance between L.m.tibetensis and L.m.migratorioides was the largest.[Conclusion] The phylogenetic relationships among four subspecies of Locusta migratoria is L.m.tibetensis,L.m.manilensis,L.m.migratoria,L.m.migratorioides.
文摘NAD(P)H oxidases were detected in suspension cultured cells of ginseng (Panax ginseng C. A. Meyer). The activities of these enzymes were induced by an elicitor (Cle) extracted from cell walls of Col-letotrichum lagerarium. In addition, Cle induced an oxidative burst and enhanced the synthesis of saponin, activity of phenylalanine ammonialyase (PAL) , accumulation of chalcone synthase (CHS) and the transcription of a hydroxyproline-rich glycoprotein gene ( hrgp ) . Pre-treatments with DPI and quinacrine (two inhibitors of mammalian neutrophil plasma membrane NADPH oxidase) for 30 min prior to Cle addition blocked the NAD(P)H oxidase activity induced by Cle. These inhibitors also inhibited the release of H2C2, the synthesis of saponin, PAL activity and CHS accumulation. Our data revealed homology between plasma membrane NAD(P)H oxidases of mammalian neutrophil cells and ginseng suspension cells. They also indicated that deactivated NAD(P)H oxidases catalysed the release of H2O2 and that H2O2 was functioning as a second messenger stimulating PAL activity, saponin synthesis and hrgp transcription. Elevations of Ca2 + and protein phos-phorylation/dephosphorylation were required for this defense process. We propose that NAD(P)H oxidases mediate the processes of Cle-induced defense responses in ginseng suspensions, and postulate the existence of a signalling cascade including extracellular Cle stimulation, activation of plasma membrane NAD(P)H oxidases, release of H2O2, and the intracellular responses of metabolism and gene transcription in ginseng suspension cells.
文摘Endogenous elicitor, termed cellulase-degraded cell wall (CDW), was prepared from the cell wall of suspension-cultured ginseng (Panax ginseng C.A. Meyer) cells via cellulase degradation. CDW activated the NADPH oxidase activity of isolated plasma membranes and stimulated in vivo H2O2 generation in ginseng cell suspensions. CDW also increased the activity of phenylalanine ammonia lyase (PAL), expression of a P. ginseng squalene epoxidase (sqe) gene and saponin synthesis. NADPH oxidase inhibitors inhibited both in vitro NADPH oxidase activity and in vivo H2O2 generation. Induction of PAL activity, saponin synthesis and sqe gene expression were all inhibited by such inhibitor treatments and reduced by incubation with catalase and HA scavengers. These data indicate that activation of NADPH oxidase and generation of H2O2 are essential signalling events mediating defence responses induced by the endogenous elicitor(s) present in CDW.
基金the grants fromthe National Natural Science Foundation of China(NNSF-30170663) the Chinese Academy of Sciences.
文摘Rhizopus rot of peach fruits could be significantly suppressed by Pichia membranefaciens. Polyphenol oxidase (PPO), peroxidase (POD) and phenylalanine ammonium-lyase (PAL) activities induced by inoculation with P. membrane faciens or R. stolonifer were studied in postharvest peach fruits. The activities of PPO and PAL in peaches increased significantly after being inoculated with P. membrane faciens + R. stolonifer by 24 h, the activities maintained at a high level throughout the experiment. Under the condition of infected with R. stolonifer alone, activity of PPO and PAL could also increased, but the levels were lower than those treated with P. membrane faciens+ R. stolonifer. However, fruits inoculaed with P. membrane-faciens + R. stolonifer or R. stolonifer alone did not stimulated POD activity. The results suggest that the activation of these defense enzymes is involved in the action of P. membrane faciens against R. stolonifer.
基金supported by the National Natural Science Foundation of China(Grant Nos.81101468&81571841)the Beijing NOVO Program(Grant No.XX2013105)
文摘Objective The roles of cerebrovascular oxidative stress in vascular functional remodeling have been described in hindlimb-unweighting (HU) rats. However, the underlying mechanism remains to be established. Methods We investigated the generation of vascular reactive oxygen species (ROS), Nox2/Nox4 protein and mRNA levels, NADPH oxidase activity, and manganese superoxide dismutase (MnSOD) and glutathione peroxidase-1 (GPx-1) mRNA levels in cerebral and mesenteric smooth muscle cells (VSMCs) of HU rats. Results ROS production increased in cerebral but not in mesenteric VSMCs of HU rats compared with those in control rats. Nox2 and Nox4 protein and mRNA levels were increased significantly but MnSOD/GPx-1 mRNA levels decreased in HU rat cerebral arteries but not in mesenteric arteries. NADPH oxidases were activated significantly more in cerebral but not in mesenteric arteries of HU rats. NADPH oxidase inhibition with apocynin attenuated cerebrovascular ROS production and partially restored Nox2/Nox4 protein and mRNA levels, NADPH oxidase activity, and MnSOD/GPx-1 mRNA levels in cerebral VSMCs of HU rats. Conclusion These results suggest that vascular NADPH oxidases regulate cerebrovascular redox status and participate in vascular oxidative stress injury during simulated microgravity.
文摘Ethylene plays an extensive role in plant growth and development.. 1-aminocyclopropane-1-carboxylate (ACC) oxidase (ACO) is the key enzyme in ethylene biosynthesis. In this study, a 354 g DNA and a 213 bp cDNA base pair (bp) candidate fragment was amplified from pepper with primers derived from the ACO sequence (AJ011109) reported by Ernesto. The putative new gene was analyzed by bioinformatics tools.
文摘An optical fiber bienzyme sensor based on the luminol chemiluminescent reaction was developed and demonstrated to be sensitive to glucose. Glucose oxidase(GOD) and horseradish peroxidase(HRP) were co-immobilized by microencapsulation in a sol-gel film derived from tetraethyl orthosilicate(TEOS). The calibration plots for glucose were established by the optical fiber glucose sensor fabricated by attaching the bienzyme silica gel onto the glass window of the fiber bundle. The linear range was 0 2-2 mmol/L and the detection limit was approximately 0 12 mmol/L. The relative standard deviation was 5.3% ( n =6). The proposed biosensor was applied to glucose assay in ofloxacin injection successfully.
文摘Cyclic voltammetry is employed to demonstrate feasibility of direct electron transfer of glucose oxidase and D amino acid oxidase at a glassy carbon electrode in organic media. The reversible slight conformational change of glucose oxidase is observed by changing 0.1 mol/L phosphate buffer to acetonitrile containing 10% v/v of water and 0.05 mol/L tetrabutyalammonium perchlorate, and vice versa.
文摘The generation of cellular energy in the form of ATP occurs mainly in mitochondria by oxidative phosphorylation.Cytochrome c oxidase(CytOx),the oxygen accepting and rate-limiting step of the respiratory chain,regulates the supply of variable ATP demands in cells by“allosteric ATP-inhibition of CytOx.”This mechanism is based on inhibition of oxygen uptake of CytOx at high ATP/ADP ratios and low ferrocytochrome c concentrations in the mitochondrial matrix via cooperative interaction of the two substrate binding sites in dimeric CytOx.The mechanism keeps mitochondrial membrane potentialΔΨm and reactive oxygen species(ROS)formation at low healthy values.Stress signals increase cytosolic calcium leading to Ca^2+-dependent dephosphorylation of CytOx subunit I at the cytosolic side accompanied by switching off the allosteric ATPinhibition and monomerization of CytOx.This is followed by increase ofΔΨm and formation of ROS.A hypothesis is presented suggesting a dynamic change of binding of NDUFA4,originally identified as a subunit of complex I,between monomeric CytOx(active state with highΔΨm,high ROS and low efficiency)and complex I(resting state with lowΔΨm,low ROS and high efficiency).
文摘BACKGROUND: Plasma D(-)-lactate and diamine oxidase (DAO) can reflect patients' intestinal mucosal condition. We evaluated the changes of plasma D (-)-lactate, DAO and endotoxin activities and their significance in patients with liver cirrhosis. METHODS: Fifty liver cirrhosis patients were enrolled into experimental group and 30 healthy people into control group. The plasma levels of D(-)-lactate, DAO and endo- toxin were detected spectrophotographically. RESULTS: The level of D(-)-lactate was significantly high- er in the experimental group than that in the control group (P<0.01). Significant differences of D (-)-lactate levels were observed in Child-Pugh subgroups of the experimen- tal group (P <0. 01). The level of DAO was significantly higher in the experimental group than that in the control group (P <0.01), but the level of DAO in Child-Pugh sub- group C was significantly lower than that in Child-Pugh subgroup B (P<0.01). The level of endotoxin was signifi- cantly increased in the experimental group except Child Pugh subgroup A (P<0.01). The plasma levels of D(-) lactate, DAO and endotoxin were positively correlated with each other (P<0.01). CONCLUSIONS: The data suggest that both plasma D(-) lactate and DAO activity are sensitive markers for early diagnosis of gut failure and endotoxemia in patients with liver cirrhosis. The impairment of intestinal barrier func- tion may be one of the critical reasons for deterioration of liver cirrhosis.