期刊文献+
共找到169,962篇文章
< 1 2 250 >
每页显示 20 50 100
Anammox生物膜富集培养过程中硝化菌的增殖特性
1
作者 李韧 于莉芳 +3 位作者 刘甜 刘然 余涛 彭党聪 《中国环境科学》 EI CAS CSCD 北大核心 2024年第2期730-738,共9页
在升流式厌氧固定床生物膜(UAFB)反应器中,通过逐步提升氮负荷富集培养厌氧氨氧化(Anammox)生物膜,考察培养过程中Anammox生物膜上硝化菌的增殖特性.结果表明,逐步提升氮负荷可以成功实现厌氧氨氧化菌(An AOB)的富集,但随着基质浓度的提... 在升流式厌氧固定床生物膜(UAFB)反应器中,通过逐步提升氮负荷富集培养厌氧氨氧化(Anammox)生物膜,考察培养过程中Anammox生物膜上硝化菌的增殖特性.结果表明,逐步提升氮负荷可以成功实现厌氧氨氧化菌(An AOB)的富集,但随着基质浓度的提升,反应器中ΔNO_(3)~-/ΔNH_(4)^(+)比值逐渐从0.76±0.11降低至0.42±0.10,表明高基质浓度更有利于Anammox生物膜的培养且不利于亚硝酸盐氧化菌(NOB)竞争亚硝酸盐.而随着培养进行,生物膜的氨氧化活性(AUR)和亚硝酸盐氧化活性(NUR)均大幅增加但最终趋于稳定.高通量测序结果表明,系统在成功富集了33.51%的Ca.Brocadia和3.02%的Ca.Jettenia的同时,氨氧化菌(AOB)-Nitrosomonas的相对丰度仅有0.78%,但培养后优势NOB-Nitrospira的丰度高达2.32%,因此,Anammox生物膜培养过程中硝化菌的增殖现象不可避免,而明显的NOB优势增殖有可能会对PN/Anammox生物脱氮工艺的稳定运行造成负面影响. 展开更多
关键词 厌氧氨氧化生物膜 升流式厌氧固定床生物膜反应器(UAFB) NITROSPIRA 硝化菌
下载PDF
Competitive oxidation behavior of Ni-based superalloy GH4738 at extreme temperature 被引量:1
2
作者 Hui Xu Shufeng Yang +4 位作者 Enhui Wang Yunsong Liu Chunyu Guo Xinmei Hou Yanling Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期138-145,共8页
A high thrust-to-weight ratio poses challenges to the high-temperature performance of Ni-based superalloys. The oxidation behavior of GH4738 at extreme temperatures has been investigated by isothermal and non-isotherm... A high thrust-to-weight ratio poses challenges to the high-temperature performance of Ni-based superalloys. The oxidation behavior of GH4738 at extreme temperatures has been investigated by isothermal and non-isothermal experiments. As a result of the competitive diffusion of alloying elements, the oxide scale included an outermost porous oxide layer (OOL), an inner relatively dense oxide layer (IOL), and an internal oxide zone (IOZ), depending on the temperature and time. A high temperature led to the formation of large voids at the IOL/IOZ interface. At 1200℃, the continuity of the Cr-rich oxide layer in the IOL was destroyed, and thus, spallation occurred. Extension of oxidation time contributed to the size of Al-rich oxide particles with the increase in the IOZ. Based on this finding,the oxidation kinetics of GH4738 was discussed, and the corresponding oxidation behavior at 900-1100℃ was predicted. 展开更多
关键词 Ni-based superalloy GH4738 extreme temperature competitive oxidation oxidation mechanism oxidation kinetics
下载PDF
Fe(Ⅲ)对Anammox污泥脱氮效能长短期影响
3
作者 郭佳文 林兴 +3 位作者 李祥 黄勇 刘天琪 赵魏东 《中国环境科学》 EI CAS CSCD 北大核心 2024年第3期1278-1285,共8页
通过接种厌氧氨氧化(Anammox)污泥,研究了Fe(Ⅲ)对Anammox污泥脱氮效能长短期影响.结果表明,适量提升Fe(Ⅲ)浓度可以提升Anammox菌的活性.当进水Fe(Ⅲ)浓度达到0.09mol/L时,反应器氮去除速率最高为0.238kg/(L·d),较对照组提升了14.... 通过接种厌氧氨氧化(Anammox)污泥,研究了Fe(Ⅲ)对Anammox污泥脱氮效能长短期影响.结果表明,适量提升Fe(Ⅲ)浓度可以提升Anammox菌的活性.当进水Fe(Ⅲ)浓度达到0.09mol/L时,反应器氮去除速率最高为0.238kg/(L·d),较对照组提升了14.2%.继续提高进水Fe(Ⅲ)浓度,氮去除速率逐步下降,当Fe(Ⅲ)浓度升至0.18mol/L时,氮去除速率降至0.215kg/(L·d),与最高氮去除速率相比下降10.75%.采用Haldane抑制动力学模型拟合得到Fe(Ⅲ)对Anammox半速率常数(KFe)为0.012mol/L,半抑制常数(KI)为0.449mol/L.长期结果表明,在0.09mol/L Fe(Ⅲ)浓度下,Anammox氮去除速率增幅最快,并且随着Fe(Ⅲ)浓度增加而逐步降低.由于Fe(Ⅲ)代替了NO_(2)^(-)-N作为电子受体发生厌氧铁氨氧化反应,在含有Fe(Ⅲ)的反应器中NO_(2)^(-)-N与NH_(4)^(+)-N的转化比在1.108~1.227之间波动,明显低于理论值1.32,并随Fe(Ⅲ)浓度的提升而降低.扫描电镜结果表明,添加Fe(Ⅲ)可使Anammox菌细胞结构更加稳定. 展开更多
关键词 Fe(Ⅲ) 厌氧氨氧化 脱氮性能 抑制动力学 扫描电镜
下载PDF
温度与负荷对Anammox菌自富集启动的PDA的影响
4
作者 马雨晴 王博 李笑迪 《中国环境科学》 EI CAS CSCD 北大核心 2024年第3期1307-1313,共7页
采用UASB反应器,接种厌氧氨氧化菌自富集启动的PDA污泥,在温度由25℃下降到19℃条件下逐步将进水氮浓度从20mg/L提高到100mg/L(即氮负荷从3.2g/(m^(3)·d)提高到4.0g/(m^(3)·d)),反应器共运行115d,总氮去除率最高可达到89.9%.1... 采用UASB反应器,接种厌氧氨氧化菌自富集启动的PDA污泥,在温度由25℃下降到19℃条件下逐步将进水氮浓度从20mg/L提高到100mg/L(即氮负荷从3.2g/(m^(3)·d)提高到4.0g/(m^(3)·d)),反应器共运行115d,总氮去除率最高可达到89.9%.16S rRNA基因测序结果表明,Candidatus Brocadia作为主要厌氧氨氧化功能菌在生物填料中丰度达到3.7%,短程反硝化功能菌Thaurea在絮体污泥中的丰度最高达15.7%.宏基因组学分析显示与短程反硝化相关的基因Nar,Nap和与厌氧氨氧化相关的Nir,Hzs和Hdh基因表达程度较高. 展开更多
关键词 厌氧氨氧化 微生物种群 宏基因组学分析 脱氮
下载PDF
温度影响下Anammox-DAMO系统N2O产消机制及调控
5
作者 韩梦茹 楼菊青 徐帆 《中国环境科学》 EI CAS CSCD 北大核心 2024年第3期1324-1334,共11页
以厌氧氨氧化-反硝化厌氧甲烷氧化(Anammox-DAMO)系统为研究对象,考察了不同温度对该系统性能和N_(2)O产消的影响,建立了该过程的酶动力学模型.结果表明,在40℃的高温胁迫下系统性能明显恶化且积累了更多的N_(2)O,Acidovorax和Thauera... 以厌氧氨氧化-反硝化厌氧甲烷氧化(Anammox-DAMO)系统为研究对象,考察了不同温度对该系统性能和N_(2)O产消的影响,建立了该过程的酶动力学模型.结果表明,在40℃的高温胁迫下系统性能明显恶化且积累了更多的N_(2)O,Acidovorax和Thauera属丰度在高温条件下显著降低,而Bacillus属丰度则上升,N_(2)O还原酶活性的抑制是N_(2)O排放量增加的主要因素.酶动力学拟合结果表明35℃时可以最大程度地实现N_(2)O减排. 展开更多
关键词 温度 anammox-DAMO系统 N_(2)O 调控策略
下载PDF
Cosmetic or Dietary Vegetable Oils Sampled in the Cameroonian Market May Not Expose Consumers to Lipid Oxidation Products Generating Oxidative Stress and Inflammation
6
作者 Ferdinand Kouoh Elombo Erika Van Damme +5 位作者 Clara Delepine David Depraetere Ludovic Chaveriat Paul Lunga Keilah Nico Fréderic Njayou Patrick Martin 《American Journal of Plant Sciences》 CAS 2024年第3期193-202,共10页
Vegetable oils are a source of energy, essential fatty acids, antioxidants and fat-soluble vitamins useful for human health care and development. These oils also contribute to organoleptic quality of their products’ ... Vegetable oils are a source of energy, essential fatty acids, antioxidants and fat-soluble vitamins useful for human health care and development. These oils also contribute to organoleptic quality of their products’ derivatives. However, their chemical and physical properties can be modified by the mode of their extraction, storage and distribution. These modifications might negatively affect the nutritional quality of the oils. The goals of this study were to: sample different vegetable oils for cosmetic or dietary use marketed in Cameroon, and verify purity and oxidation states of each kind of oil through determination of its acidity, iodine, peroxide, saponification, refractive indexes and the conformity of the labeling. The carotene content, the level of polar components and specific absorbance were also determined. As the result, six oils namely palm, palm kernel, coconut, black cumin, peanut and shea butter were collected. Apart from labeling, chemicals and physicals parameters analyzed were generally in accordance with the Cameroonian and Codex Alimentarius standard. This study suggests that vegetable oils sampled in the Cameroonian market may not expose consumers to lipid oxidation products generating pathological oxidative stress and inflammation. However, efforts in application of existing standard need to be done as far as labeling are concerned. 展开更多
关键词 Vegetable Oils Quality Control Labeling Compliance Lipid oxidation Oxidative Pathology
下载PDF
Tuning the reactivity of TiO_(2)layer with uniform distribution of Sub-5 nm Fe_(2)O_(3)particles via in situ voltage-assisted oxidation for robust catalytic reduction
7
作者 Nisa Nashrah Abdelkarim Chaouiki +1 位作者 Wail Al Zoubi Young Gun Ko 《Nano Materials Science》 EI CAS CSCD 2024年第2期223-234,共12页
The trade-off between efficiency and stability has limited the application of TiO_(2)as a catalyst due to its poor surface reactivity.Here,we present a modification of a TiO_(2)layer with highly stable Sub-5 nm Fe_(2)... The trade-off between efficiency and stability has limited the application of TiO_(2)as a catalyst due to its poor surface reactivity.Here,we present a modification of a TiO_(2)layer with highly stable Sub-5 nm Fe_(2)O_(3)nanoparticles(NP)by modulating its structure-surface reactivity relationship to attain efficiency-stability balance via a voltage-assisted oxidation approach.In situ simultaneous oxidation of the Ti substrate and Fe precursor using high-energy plasma driven by high voltage resulted in uniform distribution of Fe_(2)O_(3)NP embedded within porous TiO_(2)layer.Comprehensive surface characterizations with density functional theory demonstrated an improved electronic transition in TiO_(2)due to the presence of surface defects from reactive oxygen species and possible charge transfer from Ti to Fe;it also unexpectedly increased the active site in the TiO_(2)layer due to uncoordinated electrons in Sub-5 nm Fe_(2)O_(3)NP/TiO_(2)catalyst,thereby enhancing the adsorption of chemical functional groups on the catalyst.This unique embedded structure exhibited remarkable improvement in reducing 4-nitrophenol to 4-aminophenol,achieving approximately 99%efficiency in 20 min without stability decay after 20 consecutive cycles,outperforming previously reported TiO_(2)-based catalysts.This finding proposes a modified-electrochemical strategy enabling facile construction of TiO_(2)with nanoscale oxides extandable to other metal oxide systems. 展开更多
关键词 Titanium dioxide Oxide nanoparticle Electrochemical oxidation Surface reactivity Efficiency Stability
下载PDF
Boosted Electrocatalytic Glucose Oxidation Reaction on Noble-Metal-Free MoO_(3)-Decorated Carbon Nanotubes
8
作者 Yu-Long Men Ning Dou +3 位作者 Yiyi Zhao Yan Huang Lei Zhang Peng Liu 《Transactions of Tianjin University》 EI CAS 2024年第1期63-73,共11页
Electrocatalytic glucose oxidation reaction(GOR)has attracted much attention owing to its crucial role in biofuel cell fabrication.Herein,we load MoO_(3)nanoparticles on carbon nanotubes(CNTs)and use a discharge proce... Electrocatalytic glucose oxidation reaction(GOR)has attracted much attention owing to its crucial role in biofuel cell fabrication.Herein,we load MoO_(3)nanoparticles on carbon nanotubes(CNTs)and use a discharge process to prepare a noblemetal-free MC-60 catalyst containing MoO_(3),Mo_(2)C,and a Mo_(2)C–MoO_(3)interface.In the GOR,MC-60 shows activity as high as 745μA/(mmol/L cm^(2)),considerably higher than those of the Pt/CNT(270μA/(mmol/L cm^(2)))and Au/CNT catalysts(110μA/(mmol/L cm^(2))).In the GOR,the response minimum on MC-60 is as low as 8μmol/L,with a steady-state response time of only 3 s.Moreover,MC-60 has superior stability and anti-interference ability to impurities in the GOR.The better performance of MC-60 in the GOR is attributed to the abundant Mo sites bonding to C and O atoms at the MoO_(3)–Mo_(2)C interface.These Mo sites create active sites for promoting glucose adsorption and oxidation,enhancing MC-60 performance in the GOR.Thus,these results help to fabricate more effi cient noble-metal-free catalysts for the fabrication of glucose-based biofuel cells. 展开更多
关键词 Interface eff ect ELECTROCATALYSIS Molybdenum oxide GLUCOSE oxidation reaction
下载PDF
Oxidation behavior of 4774DD1 Ni-based single-crystal superalloy at 980℃ in air
9
作者 Yu Fang Ya-zhou Li +7 位作者 Qiang Yang Qun-gong He Xiu-fang Gong Qian Duan Hai-yang Song Fu Wang Qiong-yuan Zhang Hong Zeng 《China Foundry》 SCIE EI CAS CSCD 2024年第2期116-124,共9页
The oxidation behavior of a novel Ni-based single-crystal 4774DD1 superalloy for industrial gas turbine applications was investigated by the isothermal oxidation at 980℃ and discontinuous oxidation weight gain method... The oxidation behavior of a novel Ni-based single-crystal 4774DD1 superalloy for industrial gas turbine applications was investigated by the isothermal oxidation at 980℃ and discontinuous oxidation weight gain methods.The phase constitution and morphology of surface oxides and the characteristics of the crosssection oxide film were analyzed by XRD,SEM and EDS.Results show that the oxidation kinetics of the 4774DD1 superalloy follows the cubic law,indicating its weak oxidation resistance at this temperature.As the oxidation time increases,the composition of the oxide film evolves as following:One layer consisting of a bottom Al_(2)O_(3)sublayer and an upper(Al_(2)O_(3)+NiO)mixture sublayer after oxidized for 25 h.Then,two layers composed of an outermost small NiO discontinuous grain layer and an internal layer for 75 h.This internal layer is consisted of the bottom Al_(2)O_(3)sublayer,an intermediate narrow CrTaO_(4)sublayer,and an upper(Al_(2)O_(3)+NiO)mixture sublayer.Also two layers comprising an outermost relative continuous NiO layer with large grain size and an internal layer as the oxidation time increases to 125 h.This internal layer is composed of the upper(Al_(2)O_(3)+NiO)mixture sublayer,an intermediate continuous(CrTaO_(4)+NiWO_(4))mixture sublayer,and a bottom Al_(2)O_(3)sublayer.Finally,three layers consisting of an outermost(NiAl2O_(4)+NiCr2O_(4))mixture layer,an intermediate(CrTaO_(4)+NiWO_(4))mixture layer,and a bottom Al_(2)O_(3)layer for 200 h. 展开更多
关键词 nickel-base single crystal superalloy oxidation kinetics oxide film MICROSTRUCTURE mechanism
下载PDF
Role of methoxy and C_(α)-based substituents in electrochemical oxidation mechanisms and bond cleavage selectivity of β-O-4 lignin model compounds
10
作者 Yang Zhou Qiang Zeng +3 位作者 Hongyan He Kejia Wu Fuqiao Liu Xuehui Li 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第1期114-125,共12页
In order to better understand the specific substituent effects on the electrochemical oxidation process of β-O-4 bond, a series of methoxyphenyl type β-O-4 dimer model compounds with different localized methoxyl gro... In order to better understand the specific substituent effects on the electrochemical oxidation process of β-O-4 bond, a series of methoxyphenyl type β-O-4 dimer model compounds with different localized methoxyl groups, including 2-(2-methoxyphenoxy)-1-phenylethanone, 2-(2-methoxyphenoxy)-1-phenylethanol, 2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)ethanone, 2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)ethanol, 2-(2,6-dimethoxyphenoxy)-1-(4-methoxyphenyl)ethanone, 2-(2,6-dimethoxyphenoxy)-1-(4-methoxyphenyl)ethanol have been selected and their electrochemical properties have been studied experimentally by cyclic voltammetry, and FT-IR spectroelectrochemistry. Combining with electrolysis products distribution analysis and density functional theory calculations, oxidation mechanisms of all six model dimers have been explored. In particular, a total effect from substituents of both para-methoxy(on the aryl ring closing to Cα) and Cα-OH on the oxidation mechanisms has been clearly observed, showing a significant selectivity on the Cα-Cβbond cleavage induced by electrochemical oxidations. 展开更多
关键词 Lignin model compounds β-O-4 dimers Electrochemical oxidation oxidation mechanisms Substituent effect
下载PDF
A novel high-Cr CoNi-based superalloy with superior high-temperature microstructural stability, oxidation resistance and mechanical properties
11
作者 Xiaorui Zhang Min Zou +3 位作者 Song Lu Longfei Li Xiaoli Zhuang Qiang Feng 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1373-1381,共9页
A novel multicomponent high-Cr CoNi-based superalloy with superior comprehensive performance was prepared,and the evaluation of its high-temperature microstructural stability,oxidation resistance,and mechanical proper... A novel multicomponent high-Cr CoNi-based superalloy with superior comprehensive performance was prepared,and the evaluation of its high-temperature microstructural stability,oxidation resistance,and mechanical properties was conducted mainly using its cast polycrystalline alloy.The results disclosed that the morphology of theγ′phase remained stable,and the coarsening rate was slow during the long-term aging at 900–1000℃.The activation energy forγ′precipitate coarsening of alloy 9CoNi-Cr was(402±51)kJ/mol,which is higher compared with those of CMSX-4 and some other Ni-based and Co-based superalloys.Importantly,there was no indica-tion of the formation of topologically close-packed phases during this process.All these factors demonstrated the superior microstructural stability of the alloy.The mass gain of alloy 9CoNi-Cr was 0.6 mg/cm^(2) after oxidation at 1000℃ for 100 h,and the oxidation resistance was comparable to advanced Ni-based superalloys CMSX-4,which can be attributed to the formation of a continuous Al_(2)O_(3) protective layer.Moreover,the compressive yield strength of this cast polycrystalline alloy at high temperatures is clearly higher than that of the conventional Ni-based cast superalloy and the compressive minimum creep rate at 950℃ is comparable to that of the conventional Ni-based cast superalloy,demonstrating the alloy’s good mechanical properties at high temperature.This is partially because high Cr is bene-ficial in improving theγandγ′phase strengths of alloy 9CoNi-Cr. 展开更多
关键词 CoNi-based superalloys microstructure COARSENING oxidation mechanical properties
下载PDF
Few-layered hexagonal boron nitride nanosheets stabilized Pt NPs for oxidation promoted adsorptive desulfurization of fuel oil
12
作者 Peiwen Wu Xin Song +9 位作者 Linlin Chen Lianwen He Yingcheng Wu Duanjian Tao Jing He Chang Deng Linjie Lu Yanhong Chao Mingqing Hua Wenshuai Zhu 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第3期495-506,共12页
A few-layered hexagonal boron nitride nanosheets stabilized platinum nanoparticles(Pt/h-BNNS)is engineered for oxidation-promoted adsorptive desulfurization(OPADS)of fuel oil.It was found that the few-layered structur... A few-layered hexagonal boron nitride nanosheets stabilized platinum nanoparticles(Pt/h-BNNS)is engineered for oxidation-promoted adsorptive desulfurization(OPADS)of fuel oil.It was found that the few-layered structure and the defective sites of h-BNNS not only are beneficial to the stabilization of Pt NPs but also favor the adsorption of aromatic sulfides.By employing Pt/h-BNNS with a Pt loading amount of 1.19 wt%as the active adsorbent and air as an oxidant,a 98.0%sulfur removal over dibenzothiophene(DBT)is achieved along with a total conversion of the DBT to the corresponding sulfones(DBTO_(2)).Detailed experiments show that the excellent desulfurization activity originates from the few-layered structure of h-BNNS and the high catalytic activity of Pt NPs.In addition,the OPADS system with Pt/h-BNNS as the active adsorbent shows remarkable stability in desulfurization performance with the existence of different interferents such as olefin,and aromatic hydrocarbons.Besides,the Pt/h-BNNS can be recycled 12 times without a significant decrease in desulfurization performance.Also,a process flow diagram is proposed for deep desulfurization of fuel oil and recovery of high value-added products,which would promote the industrial application of such OPADS strategy. 展开更多
关键词 DESULFURIZATION Adsorption Catalytic oxidation Active adsorbent DIBENZOTHIOPHENE
下载PDF
Effects of Additives on the Microstructure and Tribology Performance of Ta-12W Alloy Micro-Arc Oxidation Coating
13
作者 刘玲 HU Changgang +1 位作者 CHENG Wendong 刘兴泉 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期142-149,共8页
Oxide ceramic coatings were fabricated on tantalum alloys by micro-arc oxidation (MAO) to improve their hardness and tribological properties. The MAO coatings were manufactured in a mixed silicatephosphate electrolyte... Oxide ceramic coatings were fabricated on tantalum alloys by micro-arc oxidation (MAO) to improve their hardness and tribological properties. The MAO coatings were manufactured in a mixed silicatephosphate electrolyte containing NaF and/or EDTA (ethylene diamine tetraacetic acid). The surface morphology,cross-sectional view, chemical composition, hardness, and wear performance of the coatings were analysed. As revealed by the scanning electron microscopy, silica-rich nodules appear on the MAO coating obtained in the silicate-phosphate electrolyte, but the formation of nodules is inhibited with NaF and/or EDTA in the electrolyte.Also, they reduce the roughness and improve the compactness of the coatings, which are composed of Ta_(2)O_(5),(Ta, O), and TaO. A thick and hard coating is obtained in the NaF-containing electrolyte, and the tribology performance is effectively improved. With additives, the nodule structure is detached from the coating surface and dissolved in the electrolyte. By using NaF as an electrolyte additive, the abrasion performance of the MAO coating is enhanced by decreasing the nodule structure, increasing the size of micropores, and improving the coating hardness. 展开更多
关键词 micro-arc oxidation tantalum alloy ADDITIVES tribology performance
下载PDF
Oxidation behavior and improvement in nonflammability of LPSO-type Mg–Zn–Y–Sr alloy
14
作者 Shin-ichi Inoue Kazumasa Iwanaga Yoshihito Kawamura 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第2期742-749,共8页
Mg_(97)Zn_(1)Y_(2)alloys with high ignition temperatures were developed by adding Sr.The addition of Sr resulted in the formation of a uniform and thin Y_(2)O_(3)film.Mg–Zn–Y alloys containing at least 0.25 at.%Sr e... Mg_(97)Zn_(1)Y_(2)alloys with high ignition temperatures were developed by adding Sr.The addition of Sr resulted in the formation of a uniform and thin Y_(2)O_(3)film.Mg–Zn–Y alloys containing at least 0.25 at.%Sr exhibited ignition temperatures of 1270–1320 K.As a result of EDS measurement,Sr was found to be concentrated in the Y_(2)O_(3)film.In addition,a mixed film of MgO and Sr O formed on the outer layer in the 1.5 at.%Sr-containing Mg_(97)Zn_(1)Y_(2)alloy.These findings suggest that the uniform and thin Y_(2)O_(3)film that maintains high soundness at high temperatures was formed owing to valence control and the formation of a protective outer oxide film. 展开更多
关键词 Magnesium alloy YTTRIUM STRONTIUM High-temperature oxidation Nonflammability
下载PDF
Electron-distribution control via Pt/NC and MoC/NC dual junction:Boosted hydrogen electro-oxidation and theoretical study
15
作者 Feng Zhou Xiaofeng Ke +8 位作者 Yihuang Chen Mei Zhao Yun Yang Youqing Dong Chao Zou Xi’an Chen Huile Jin Lijie Zhang Shun Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期513-520,I0011,共9页
The scarcity,high cost and susceptibility to CO of Platinum severely restrict its application in alkaline hydrogen oxidation reaction(HOR).Hybridizing Pt with other transition metals provides an effective strategy to ... The scarcity,high cost and susceptibility to CO of Platinum severely restrict its application in alkaline hydrogen oxidation reaction(HOR).Hybridizing Pt with other transition metals provides an effective strategy to modulate its catalytic HOR performance,but at the cost of mass activity due to the coverage of modifiers on Pt surface.Herein,we constructed dual junctions'Pt/nitrogen-doped carbon(Pt/NC)andδ-MoC/NC to modify electronic structure of Pt via interfacial electron transfer to acquire Pt-MoC@NC catalyst with electron-deficient Pt nanoparticles,simultaneously endowing it with high mass activity and durability of alkaline HOR.Moreover,the unique structure of Pt-MoC@NC endows Pt with a high COtolerance at 1,000 ppm CO/H_(2),a quality that commercial Pt-C catalyst lacks.The theoretical calculations not only confirm the diffusion of electrons from Pt/NC to Mo C/NC could occur,but also demonstrate the negative shift of Pt d-band center for the optimized binding energies of*H,*OH and CO. 展开更多
关键词 Hydrogen oxidation reaction Dual junctions CO-tolerance PLATINUM
下载PDF
Ferric ion-triggered surface oxidation of galena for efficient chalcopyrite-galena separation
16
作者 Qiancheng Zhang Limin Zhang +3 位作者 Feng Jiang Honghu Tang Li Wang Wei Sun 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期261-267,共7页
The efficient separation of chalcopyrite(CuFeS2)and galena(PbS)is essential for optimal resource utilization.However,find-ing a selective depressant that is environmentally friendly and cost effective remains a challe... The efficient separation of chalcopyrite(CuFeS2)and galena(PbS)is essential for optimal resource utilization.However,find-ing a selective depressant that is environmentally friendly and cost effective remains a challenge.Through various techniques,such as mi-croflotation tests,Fourier transform infrared spectroscopy,scanning electron microscopy(SEM)observation,X-ray photoelectron spec-troscopy(XPS),and Raman spectroscopy measurements,this study explored the use of ferric ions(Fe^(3+))as a selective depressant for ga-lena.The results of flotation tests revealed the impressive selective inhibition capabilities of Fe^(3+)when used alone.Surface analysis showed that Fe^(3+)significantly reduced the adsorption of isopropyl ethyl thionocarbamate(IPETC)on the galena surface while having a minimal impact on chalcopyrite.Further analysis using SEM,XPS,and Raman spectra revealed that Fe^(3+)can oxidize lead sulfide to form compact lead sulfate nanoparticles on the galena surface,effectively depressing IPETC adsorption and increasing surface hydrophilicity.These findings provide a promising solution for the efficient and environmentally responsible separation of chalcopyrite and galena. 展开更多
关键词 GALENA CHALCOPYRITE ferric ions flotation separation surface oxidation
下载PDF
Systematic engineering of BiVO_(4)photoanode for efficient photoelectrochemical water oxidation
17
作者 Zhiting Liang Meng Li +6 位作者 Kai‐Hang Ye Tongxin Tang Zhan Lin Yuying Zheng Yongchao Huang Hongbing Ji Shanqing Zhang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第4期12-21,共10页
BiVO_(4)is one of the most promising photoanode materials for photoelectrochemical(PEC)solar energy conversion,but it still suffers from poor photocurrent density due to insufficient light‐harvesting efficiency(LHE),... BiVO_(4)is one of the most promising photoanode materials for photoelectrochemical(PEC)solar energy conversion,but it still suffers from poor photocurrent density due to insufficient light‐harvesting efficiency(LHE),weak photogenerated charge separation efficiency(Φ_(Sep)),and low water oxidation efficiency(Φ_(OX)).Herein,we tackle these challenges of the BiVO_(4)photoanodes using systematic engineering,including catalysis engineering,bandgap engineering,and morphology engineering.In particular,we deposit a NiCoO_(x)layer onto the BiVO_(4)photoanode as the oxygen evolution catalyst to enhance theΦ_(OX)of Fe‐g‐C_(3)N_(4)/BiVO_(4)for PEC water oxidation,and incorporate Fe‐doped graphite‐phase C_(3)N_(4)(Fe‐g‐C_(3)N_(4))into the BiVO_(4)photoanode to optimize the bandgap and surface areas to subsequently expand the light absorption range of the photoanode from 530 to 690 nm,increase the LHE andΦ_(Sep),and further improve the oxygen evolution reaction activity of the NiCoO_(x)catalytic layer.Consequently,the maximum photocurrent density of the as‐prepared NiCoO_(x)/Fe‐g‐C_(3)N_(4)/BiVO_(4)is remarkably boosted from 4.6 to 7.4 mA cm^(−2).This work suggests that the proposed systematic engineering strategy is exceptionally promising for improving LHE,Φ_(Sep),andΦ_(OX)of BiVO_(4)‐based photoanodes,which will substantially benefit the design,preparation,and large‐scale application of next‐generation high‐performance photoanodes. 展开更多
关键词 bismuth vanadate carbon nitride charge separation HETEROJUNCTION water oxidation
下载PDF
Microwave-assisted exploration of the electron configuration-dependent electrocatalytic urea oxidation activity of 2D porous NiCo_(2)O_(4) spinel
18
作者 Jun Wan Zhiao Wu +11 位作者 Guangyu Fang Jinglin Xian Jiao Dai Jiayue Guo Qingxiang Li Yongfei You Kaisi Liu Huimin Yu Weilin Xu Huiyu Jiang Minggui Xia Huanyu Jin 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期226-235,共10页
Urea holds promise as an alternative water-oxidation substrate in electrolytic cells.High-valence nickelbased spinel,especially after heteroatom doping,excels in urea oxidation reactions(UOR).However,traditional spine... Urea holds promise as an alternative water-oxidation substrate in electrolytic cells.High-valence nickelbased spinel,especially after heteroatom doping,excels in urea oxidation reactions(UOR).However,traditional spinel synthesis methods with prolonged high-temperature reactions lack kinetic precision,hindering the balance between controlled doping and highly active two-dimensional(2D)porous structures design.This significantly impedes the identification of electron configuration-dependent active sites in doped 2D nickel-based spinels.Herein,we present a microwave shock method for the preparation of 2D porous NiCo_(2)O_(4)spinel.Utilizing the transient on-off property of microwave pulses for precise heteroatom doping and 2D porous structural design,non-metal doping(boron,phosphorus,and sulfur)with distinct extranuclear electron disparities serves as straightforward examples for investigation.Precise tuning of lattice parameter reveals the impact of covalent bond strength on NiCo_(2)O_(4)structural stability.The introduced defect levels induce unpaired d-electrons in transition metals,enhancing the adsorption of electron-donating amino groups in urea molecules.Simultaneously,Bode plots confirm the impact mechanism of rapid electron migration caused by reduced band gaps on UOR activity.The prepared phosphorus-doped 2D porous NiCo_(2)O_(4),with optimal electron configuration control,outperforms most reported spinels.This controlled modification strategy advances understanding theoretical structure-activity mechanisms of high-performance 2D spinels in UOR. 展开更多
关键词 2D materials SPINEL Microwave ELECTROCATALYSIS Urea oxidation reaction
下载PDF
Efficient and stable PtFe alloy catalyst for electrocatalytic methanol oxidation with high resistance to CO
19
作者 Qian Yang Sifan Zhang +5 位作者 Fengshun Wu Lihua Zhu Guang Li Mingzhi Chen An Pei Yingliang Feng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期327-336,I0008,共11页
Direct methanol fuel cells(DMFC) are widely considered to be an ideal green energy conversion device but their widespread applications are limited by the high price of the Pt-based catalysts and the instability in ter... Direct methanol fuel cells(DMFC) are widely considered to be an ideal green energy conversion device but their widespread applications are limited by the high price of the Pt-based catalysts and the instability in terms of surface CO toxicity in long-term operation.Herein,the PtFe alloy nanoparticles(NPs) with small particle size(~4.12 nm) supported on carbon black catalysts with different Pt/Fe atomic ratios(Pt_(1)Fe_(2)/C,Pt_(3)Fe_(4)/C,Pt_(1)Fe_(1)/C,and Pt_(2)Fe_(1)/C) are successfully prepared for enhanced anti-CO poisoning during methanol oxidation reaction(MOR).The optimal atomic ratio of Pt/Fe for the MOR is 1:2,and the mass activity of Pt_(1)Fe_(2)/C(5.40 A mg_(Pt)^(-1)) is 13.5 times higher than that of conventional commercial Pt/C(Pt/C-JM)(0.40 A mg_(Pt)^(-1)).The introduction of Fe into the Pt lattice forms the PtFe alloy phase,and the electron density of Pt is reduced after forming the PtFe alloy.In-situ Fourier transform infrared results indicate that the addition of oxyphilic metal Fe has reduced the adsorption of reactant molecules on Pt during the MOR.The doping of Fe atoms helps to desorb toxic intermediates and regenerate Pt active sites,promoting the cleavage of C-O bonds with good selectivity of CO_(2)(58.1%).Moreover,the Pt_(1)Fe_(2)/C catalyst exhibits higher CO tolerance,methanol electrooxidation activity,and long-term stability than other Pt_(x)Fe_(y)/C catalysts. 展开更多
关键词 Alloy catalyst PTFE Methanol oxidation In-situ FTIR CO resistance
下载PDF
Precision tuning of highly efficient Pt-based ternary alloys on nitrogen-doped multi-wall carbon nanotubes for methanol oxidation reaction
20
作者 Xingqun Zheng Zhengcheng Wang +3 位作者 Qian Zhou Qingmei Wang Wei He Shun Lu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期242-251,I0006,共11页
The electrochemical methanol oxidation is a crucial reaction in the conversion of renewable energy.To enable the widespread adoption of direct methanol fuel cells(DMFCs),it is essential to create and engineer catalyst... The electrochemical methanol oxidation is a crucial reaction in the conversion of renewable energy.To enable the widespread adoption of direct methanol fuel cells(DMFCs),it is essential to create and engineer catalysts that are both highly effective and robust for conducting the methanol oxidation reaction(MOR).In this work,trimetallic PtCoRu electrocatalysts on nitrogen-doped carbon and multi-wall carbon nanotubes(PtCoRu@NC/MWCNTs)were prepared through a two-pot synthetic strategy.The acceleration of CO oxidation to CO_(2) and the blocking of CO reduction on adjacent Pt active sites were attributed to the crucial role played by cobalt atoms in the as-prepared electrocatalysts.The precise control of Co atoms loading was achieved through precursor stoichiometry.Various physicochemical techniques were employed to analyze the morphology,element composition,and electronic state of the catalyst.Electrochemical investigations and theoretical calculations confirmed that the Pt_(1)Co_(3)Ru_(1)@NC/MWCNTs exhibit excellent electrocatalytic performance and durability for the process of MOR.The enhanced MOR activity can be attributed to the synergistic effect between the multiple elements resulting from precisely controlled Co loading content on surface of the electrocatalyst,which facilitates efficient charge transfer.This interaction between the multiple components also modifies the electronic structures of active sites,thereby promoting the conversion of intermediates and accelerating the MOR process.Thus,achieving precise control over Co loading in PtCoRu@NC/MWCNTs would enable the development of high-performance catalysts for DMFCs. 展开更多
关键词 Ternary alloys ELECTROCATALYSTS Methanol oxidation reaction Electron transfer Theoretical calculations
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部