In order to better understand the specific substituent effects on the electrochemical oxidation process of β-O-4 bond, a series of methoxyphenyl type β-O-4 dimer model compounds with different localized methoxyl gro...In order to better understand the specific substituent effects on the electrochemical oxidation process of β-O-4 bond, a series of methoxyphenyl type β-O-4 dimer model compounds with different localized methoxyl groups, including 2-(2-methoxyphenoxy)-1-phenylethanone, 2-(2-methoxyphenoxy)-1-phenylethanol, 2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)ethanone, 2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)ethanol, 2-(2,6-dimethoxyphenoxy)-1-(4-methoxyphenyl)ethanone, 2-(2,6-dimethoxyphenoxy)-1-(4-methoxyphenyl)ethanol have been selected and their electrochemical properties have been studied experimentally by cyclic voltammetry, and FT-IR spectroelectrochemistry. Combining with electrolysis products distribution analysis and density functional theory calculations, oxidation mechanisms of all six model dimers have been explored. In particular, a total effect from substituents of both para-methoxy(on the aryl ring closing to Cα) and Cα-OH on the oxidation mechanisms has been clearly observed, showing a significant selectivity on the Cα-Cβbond cleavage induced by electrochemical oxidations.展开更多
The scarcity,high cost and susceptibility to CO of Platinum severely restrict its application in alkaline hydrogen oxidation reaction(HOR).Hybridizing Pt with other transition metals provides an effective strategy to ...The scarcity,high cost and susceptibility to CO of Platinum severely restrict its application in alkaline hydrogen oxidation reaction(HOR).Hybridizing Pt with other transition metals provides an effective strategy to modulate its catalytic HOR performance,but at the cost of mass activity due to the coverage of modifiers on Pt surface.Herein,we constructed dual junctions'Pt/nitrogen-doped carbon(Pt/NC)andδ-MoC/NC to modify electronic structure of Pt via interfacial electron transfer to acquire Pt-MoC@NC catalyst with electron-deficient Pt nanoparticles,simultaneously endowing it with high mass activity and durability of alkaline HOR.Moreover,the unique structure of Pt-MoC@NC endows Pt with a high COtolerance at 1,000 ppm CO/H_(2),a quality that commercial Pt-C catalyst lacks.The theoretical calculations not only confirm the diffusion of electrons from Pt/NC to Mo C/NC could occur,but also demonstrate the negative shift of Pt d-band center for the optimized binding energies of*H,*OH and CO.展开更多
Owing to the intrinsically sluggish kinetics of urea oxidation reaction(UOR)involving a six-electron transfer process,developing efficient UOR electrocatalyst is a great challenge remained to be overwhelmed.Herein,by ...Owing to the intrinsically sluggish kinetics of urea oxidation reaction(UOR)involving a six-electron transfer process,developing efficient UOR electrocatalyst is a great challenge remained to be overwhelmed.Herein,by taking advantage of 2-Methylimidazole,of which is a kind of alkali in water and owns strong coordination ability to Co^(2+)in methanol,trace Co(1.0 mol%)addition was found to induce defect engineering onα-Ni(OH)_(2)in a dual-solvent system of water and methanol.Physical characterization results revealed that the synthesized electrocatalyst(WM-Ni_(0.99)Co_(0.01)(OH)_(2))was a kind of defective nanosheet with thickness around 5-6 nm,attributing to the synergistic effect of Co doping and defect engineering,its electron structure was finely altered,and its specific surface a rea was tremendously enlarged from 68 to 172.3 m^(2)g^(-1).With all these merits,its overpotential to drive 10 mA cm^(-2)was reduced by 110 mV.Besides,the interfacial behavior of UOR was also well deciphered by operando electrochemical impedance spectroscopy.展开更多
Exploitation of oxygen evolution reaction(OER)and urea oxidation reaction(UOR)catalysts with high activity and stability at large current density is a major challenge for energy-saving H_(2) production in water electr...Exploitation of oxygen evolution reaction(OER)and urea oxidation reaction(UOR)catalysts with high activity and stability at large current density is a major challenge for energy-saving H_(2) production in water electrolysis.Herein,we use the pyridinic-N doping carbon layers coupled with tensile strain of FeNi alloy activated by NiFe_(2)O_(4)(FeNi/NiFe_(2)O_(4)@NC)for efficiently increasing the performance of water and urea oxidation.Due to the tensile strain effect on FeNi/NiFe_(2)O_(4)@NC,it provides a favorable modulation on the electronic properties of the active center,thus enabling amazing OER(η_(100)=196 mV)and UOR(E_(10)=1.32 V)intrinsic activity.Besides,the carbon-coated layers can be used as armor to prevent FeNi alloy from being corroded by the electrolyte for enhancing the OER/UOR stability at large current density,showing high industrial practicability.This work thus provides a simple way to prepare high-efficiency catalyst for activating water and urea oxidation.展开更多
Surface ozone(O_(3))poses significant threats to public health,agricultural crops,and plants in natural ecosystems.Global warming is likely to increase future O_(3)mainly by altering atmospheric photochemical reaction...Surface ozone(O_(3))poses significant threats to public health,agricultural crops,and plants in natural ecosystems.Global warming is likely to increase future O_(3)mainly by altering atmospheric photochemical reactions and enhancing biogenic volatile organic compound(BVOC)emissions.To assess the impacts of the future 1.5 K climate target on O_(3)concentrations and ecological O_(3)exposure in China,numerical simulations were conducted using the CMAQ(Community Multiscale Air Quality)model during April-October 2018.Ecological O_(3)exposure was estimated using six indices(i.e.,M7,M24,N100,SUM60,W126,and AOT40f).The results show that the temperature rise increases the MDA8 O_(3)(maximum daily eight-hour average O_(3))concentrations by∼3 ppb and the number of O_(3)exceedance days by 10-20 days in the North China Plain(NCP),Yangtze River Delta(YRD),and Sichuan Basin(SCB)regions.All O_(3)exposure indices show substantial increases.M24 and M7 in eastern and southern China will rise by 1-3 ppb and 2-4 ppb,respectively.N100 increases by more than 120 h in the surrounding regions of Beijing.SUM60 increases by greater than 9 ppm h^(−1),W126 increases by greater than 15 ppm h^(−1)in Shaanxi and SCB,and AOT40f increases by 6 ppm h^(−1)in NCP and SCB.The temperature increase also promotes atmospheric oxidation capacity(AOC)levels,with the higher AOC contributed by OH radicals in southern China but by NO_(3)radicals in northern China.The change in the reaction rate caused by the temperature increase has a greater influence on O_(3)exposure and AOC than the change in BVOC emissions.展开更多
RuO_(2) has been considered a potential alternative to commercial IrO_(2) for the oxygen evolution reaction(OER)due to its superior intrinsic activity.However,its inherent structure dissolution in acidic environments ...RuO_(2) has been considered a potential alternative to commercial IrO_(2) for the oxygen evolution reaction(OER)due to its superior intrinsic activity.However,its inherent structure dissolution in acidic environments restricts its commercial applications.In this study,we report a novel Pd-doped ruthenium oxide(Pd–RuO_(2))nanosheet catalyst that exhibits improved activity and stability through a synergistic effect of Pd modulation of Ru electronic structure and the two-dimensional structure.The catalyst exhibits excellent performance,achieving an overpotential of only 204 mVat a current density of 10 mA cm^(-2).Impressively,after undergoing 8000 cycles of cyclic voltammetry testing,the overpotential merely decreased by 5 mV.The PEM electrolyzer with Pd0.08Ru0.92O_(2) as an anode catalyst survived an almost 130 h operation at 200 mA cm^(-2).To elucidate the underlying mechanisms responsible for the enhanced stability,we conducted an X-ray photoelectron spectroscopy(XPS)analysis,which reveals that the electron transfer from Pd to Ru effectively circumvents the over-oxidation of Ru,thus playing a crucial role in enhancing the catalyst's stability.Furthermore,density functional theory(DFT)calculations provide compelling evidence that the introduction of Pd into RuO_(2) effectively modulates electron correlations and facilitates the electron transfer from Pd to Ru,thereby preventing the overoxidation of Ru.Additionally,the application of the two-dimensional structure effectively inhibited the aggregation and growth of nanoparticles,further bolstering the structural integrity of the catalyst.展开更多
Co-Ni-based superalloys are known for their capability to function at elevated temperatures and superior hot corrosion and thermal fatigue resistance.Therefore,these alloys show potential as crucial high-temperature s...Co-Ni-based superalloys are known for their capability to function at elevated temperatures and superior hot corrosion and thermal fatigue resistance.Therefore,these alloys show potential as crucial high-temperature structural materials for aeroengine and gas turbine hot-end components.Our previous work elucidated the influence of Ti and Ta on the high-temperature mechanical properties of alloys.However,the intricate interaction among elements considerably affects the oxidation resistance of alloys.In this paper,Co-35Ni-10Al-2W-5Cr-2Mo-1Nb-xTi-(5−x)Ta alloys(x=1,2,3,4)with varying Ti and Ta contents were designed and compounded,and their oxidation resistance was investigated at the temperature range from 800 to 1000℃.After oxidation at three test conditions,namely,800℃for 200 h,900℃for 200 h,and 1000℃for 50 h,the main structure of the oxide layer of the alloy consisted of spinel,Cr_(2)O_(3),and Al_(2)O_(3)from outside to inside.Oxides consisting of Ta,W,and Mo formed below the Cr_(2)O_(3)layer.The interaction of Ti and Ta imparted the highest oxidation resistance to 3Ti2Ta alloy.Conversely,an excessive amount of Ti or Ta resulted in an adverse effect on the oxidation resistance of the alloys.This study reports the volatilization of W and Mo oxides during the oxidation process of Co-Ni-based cast superalloys with a high Al content for the first time and explains the formation mechanism of holes in the oxide layer.The results provide a basis for gaining insights into the effects of the interaction of alloying elements on the oxidation resistance of the alloys they form.展开更多
Vegetable oils are a source of energy, essential fatty acids, antioxidants and fat-soluble vitamins useful for human health care and development. These oils also contribute to organoleptic quality of their products’ ...Vegetable oils are a source of energy, essential fatty acids, antioxidants and fat-soluble vitamins useful for human health care and development. These oils also contribute to organoleptic quality of their products’ derivatives. However, their chemical and physical properties can be modified by the mode of their extraction, storage and distribution. These modifications might negatively affect the nutritional quality of the oils. The goals of this study were to: sample different vegetable oils for cosmetic or dietary use marketed in Cameroon, and verify purity and oxidation states of each kind of oil through determination of its acidity, iodine, peroxide, saponification, refractive indexes and the conformity of the labeling. The carotene content, the level of polar components and specific absorbance were also determined. As the result, six oils namely palm, palm kernel, coconut, black cumin, peanut and shea butter were collected. Apart from labeling, chemicals and physicals parameters analyzed were generally in accordance with the Cameroonian and Codex Alimentarius standard. This study suggests that vegetable oils sampled in the Cameroonian market may not expose consumers to lipid oxidation products generating pathological oxidative stress and inflammation. However, efforts in application of existing standard need to be done as far as labeling are concerned.展开更多
Safe emplacement of high-level nuclear waste(HLNW)arising from the utilization of nuclear power is a frequently en-countered and considerably challenging issue.The widely accepted and feasible approach for the permane...Safe emplacement of high-level nuclear waste(HLNW)arising from the utilization of nuclear power is a frequently en-countered and considerably challenging issue.The widely accepted and feasible approach for the permanent disposal of HLNW involves housing it in a corrosion-resistant container and subsequently burying it deep in a geologic repository.The focus lies on ensuring the dur-ability and integrity of the container in this process.This review introduces various techniques and strategies employed in controlling the corrosion of used fuel containers(UFCs)using copper(Cu)as corrosion barrier in the context of deep geological disposal.Overall,these corrosion prevention techniques and methods have been effectively implemented and employed to successfully mitigate the corrosion challenges encountered during the permanent disposal of Cu containers(e.g.,corrosion mechanisms and corrosion parameters)in deep geologic repositories.The primary objective of this review is to provide an extensive examination of the alteration in the corrosion envir-onment encountered by the UFCs when subjected to deep geologic repository conditions and focusing on addressing the potential corro-sion scenarios.展开更多
Photocatalytic water oxidation is a crucial counter-electrode reaction in the process of photoelectrochemical energy conversion.Despite its importance,challenges remain in effectively and sustainably converting water ...Photocatalytic water oxidation is a crucial counter-electrode reaction in the process of photoelectrochemical energy conversion.Despite its importance,challenges remain in effectively and sustainably converting water to oxygen,particularly with readily available and inexpensive electrolyte solutions such as seawater.While metal oxide materials have demonstrated their advantages in promoting efficiency by reducing overpotential and improving light utilization,stability remains limited by corrosion in multicomponent seawater.In this paper,we reviewed the relationship between four basic concepts including photoelectrochemistry,metal oxide,water oxidation and seawater to better understand the challenges and opportunities in photoelectrochemical(PEC)seawater oxidation.To overcome these challenges,the advances in material design,interfacial modification,local environment control and reactor design have been further reviewed to benefit the industrial PEC seawater oxidation.Noticeably,we demonstrate engineered layered metal oxide electrodes and cell structures that enable powerful and stable seawater oxidation.We also outline and advise on the future direction in this area.展开更多
Introduction: Not all medicines that pass-through consumers’ hands are used, and some often expire in households. These health products can be sources of accidental risks and pollution when they are not properly disp...Introduction: Not all medicines that pass-through consumers’ hands are used, and some often expire in households. These health products can be sources of accidental risks and pollution when they are not properly disposed of. In Burkina Faso, there are as yet no guidelines for the disposal of unused medicines in households. The aim of this study was to estimate the extent of household possession of unused or expired medicines, and to describe attitudes and disposal practices. Methods: This was a descriptive cross-sectional study covering households in the Ouagadougou commune conducted from June to August 2021. Two-stage stratified sampling was used: selection of Enumeration Zones (EZs) and selection of households, with each EZ comprising several households. Data collection was based on direct interviews using a structured questionnaire. Data were processed using Epi Info software version 7.2.4.0. Results: In total, 417 household residents were surveyed out of the planned 423 households, corresponding to a completion rate of 98.58% compared with the initial sample. Among the respondents, 79.62% had unused and/or expired medicines in their household. A total of 2562 drug packaging units were counted, for a total weight of 121.90 kg. Nearly 75% were aware that improper disposal was a danger to the environment. Some respondents kept their unused medicines at home until they expired (43.41%), and disposed of them mainly by throwing them in the household garbage (75.58%). The majority (79%) were in favor of the government setting up a take-back program for these medicines. Conclusion: The introduction of a take-back program for unused or out-of-date medicines will ensure safer disposal of medicines, and better protection for households and the environment.展开更多
Background: Handling of medicines is a day-to-day activity by patients and many health care providers. However, multiple studies have brought to light inappropriate disposal methods for expired and unused medication (...Background: Handling of medicines is a day-to-day activity by patients and many health care providers. However, multiple studies have brought to light inappropriate disposal methods for expired and unused medication (EUM). Improper disposal of expired and unused medicines is hazardous both to humans and the environment. Objective: This sought to measure patients’ knowledge, attitude, and practices on disposal methods of EUM. Methods: A cross-sectional study was carried out among 384 patients at three outpatient pharmacies at the University Teaching Hospitals (UTHs). The structured questionnaire was used to collect data and STAT version 15.1 was used to analyse the data. Results: 384 respondents participated in this study and, at some point, had EUM. In this study, 356 (92.7%) of the participants reported that they had never heard of a drug take-back system. Most of the participants 285 (74.2%) and 239 (62.2%) kept and donated their unused medicine, respectively. Additionally, 244 (63.5%), 212 (55.2%), and 176 (44.8%) of the participants disposed of expired medicines in the bin or garbage, flushed them in toilets or sinks, or burned them, respectively. Occupation was significantly associated with unsafe disposal of unused medicine [P-value = 0.019]. Conclusion and Relevance: Knowledge of safe disposal methods for EUM was good amongst most participants. However, used unsafe disposal methods. The majority of the participants exhibited positive attitude concerning safe disposal methods. This study highlights the need for drug-take-back program creation in Zambia.展开更多
The high-temperature oxidation behaviour of the Inconel 625 alloy at 950℃ was investigated after different ageing treatments.The effect of heat treatment on the oxidation behaviour of the alloy was analysed by charac...The high-temperature oxidation behaviour of the Inconel 625 alloy at 950℃ was investigated after different ageing treatments.The effect of heat treatment on the oxidation behaviour of the alloy was analysed by characterizing the structure and elemental distribution before and after oxidation.The results reveal that the two ageing treatments at 650℃ for 500 h and at 750℃ for 400 h both reduced the oxidation mass gain.After oxidation at 950℃,an outer Cr_(2)O_(3) layer and inner Al_(2)O_(3) are identified as the main oxidation products.Moreover,Nb_(2)O_(5) andδ(Ni_(3)Nb)phases precipitated after oxidation.The ageing treatments cause the rapid generation of a dense Cr_(2)O_(3) layer on the surface,which prevents the diffusion of oxygen into the matrix,reduce the Al_(2)O_(3) inward growth depth,and improve the oxidation resistance of the alloy.展开更多
The aim of this study was to investigate the oxidation reactivity and behavior of exhaust particulate matter(PM)from diesel engines.PM samples from two diesel engines(1K,CY4102)with different emission levels were coll...The aim of this study was to investigate the oxidation reactivity and behavior of exhaust particulate matter(PM)from diesel engines.PM samples from two diesel engines(1K,CY4102)with different emission levels were collected by a thermophoretic system and a quartz filter.The oxidation reactivity,oxidation behaviors,and physicochemical properties of the PM samples were analyzed using thermogravimetric analysis(TGA),high-resolution transmission electron microscopy(HRTEM),Fourier-transform infrared spectrometry(FTIR),and Raman spectroscopy.The results showed that there was a great difference in the oxidation reactivity of soot particles emitted by the two different diesel engines.A qualitative analysis of the factors influencing oxidation reactivity showed that the nanostructure,degree of graphitization,and relative concentration of aliphatic C—H functional groups were the most important factors,whereas no significant correlation was found between the primary particle size and activation energy of the diesel soot.Based on the oxidation behavior analysis,the diesel soot particles exhibited both internal and surface oxidation modes during the oxidation process.Surface oxidation was dominant during the initial stage,and as oxidation progressed,the mode gradually changed to internal oxidation.Internal oxidation mode of soot particles from the 1K engine was significantly higher than that of CY4102.展开更多
The oxidation behavior of ferrovanadium spinel(FeV_(2)O_(4)),synthesized via high-temperature solid-state reaction,was investigated using thermogravimetry,X-ray diffractometry,and X-ray photoelectron spectroscopy over...The oxidation behavior of ferrovanadium spinel(FeV_(2)O_(4)),synthesized via high-temperature solid-state reaction,was investigated using thermogravimetry,X-ray diffractometry,and X-ray photoelectron spectroscopy over the temperature range of 450–700℃.The results revealed that the oxidation process of FeV_(2)O_(4)can be divided into three stages with the second stage being responsible for maximum weight gain due to oxidation.Three classical methods were employed to analyze the reaction mechanisms and model functions for distinct oxidation stages.The random nucleation and subsequent growth(A_(3))kinetic model was found to be applicable to both initial and secondary stage.The third stage of oxidation was consistent with the three-dimensional diffusion,spherical symmetry(D_(3))kinetic mode.Both the model-function method and the model-free method were utilized to investigate the apparent activation energy of the oxidation reaction at each stage.It was found that the intermediates including Fe_(3)O_(4),VO_(2),V_(2)O_(3),and Fe_(2.5)V_(7.11)O_(16),played significant roles in the oxidation process prior to the final formation of FeVO_(4)and V_(2)O_(5)through oxidation of FeV_(2)O_(4).展开更多
The genus Marinobacter is very broadly distributed in global environments and is considered as aerobic heterotroph.In this study,six Marinobacter strains were identified with autotrophic thiosulfate oxidation capacity...The genus Marinobacter is very broadly distributed in global environments and is considered as aerobic heterotroph.In this study,six Marinobacter strains were identified with autotrophic thiosulfate oxidation capacity.These strains,namely Marinobacter guineae M3B^(T),Marinobacter aromaticivorans D15-8PT,Marinobacter vulgaris F01^(T),Marinobacter profundi PWS21^(T),Marinobacter denitrificans JB02H27T,and Marinobacter sp.ST-1M(with a 99.93%similarity to the 16S rDNA sequences of Marinobacter salsuginis SD-14B^(T)),were screened out of 32 Marinobacter strains by autotrophic thiosulfate oxidization medium.The population of cells grew in a chemolithotrophic medium,increasing from 105 cells/mL to 10^(7) cells/mL within 5 d.This growth was accompanied by the consumption of thiosulfate 3.59 mmol/L to 9.64 mmol/L and the accumulation of sulfate up to 0.96 mmol/L,and occasionally produced sulfur containing complex particles.Among these Marinobacter strains,it was also found their capability of oxidizing thiosulfate to sulfate in a heterotrophic medium.Notably,M.vulgaris F01^(T)and M.antarcticus ZS2-30^(T)showed highly significant production of sulfate at 9.45 mmol/L and 3.10 mmol/L.Genome annotation indicated that these Marinobacter strains possess a complete Sox cluster for thiosulfate oxidation.Further phylogenetic analysis of the soxB gene revealed that six Marinobacter strains formed a separate lineage within Gammaproteobacteria and close to obligate chemolithoautotroph Thiomicrorhabdus arctica.The results indicated that thiosulfate oxidizing and chemolithoautotrophic potential in Marinobacter genus,which may contribute to the widespread of Marinobacter in the global ocean.展开更多
Graphene oxide(GO)has proven to be an effective reinfor-cing filler for rubber[1].GO has superior mechanical properties,barrier properties,large specific surface area and abundant oxygen-containing functional groups[2...Graphene oxide(GO)has proven to be an effective reinfor-cing filler for rubber[1].GO has superior mechanical properties,barrier properties,large specific surface area and abundant oxygen-containing functional groups[2].However,the change in the oxidation degree of GO has a great effect on its chemical properties,the interaction between GO and the matrix,and the dispersion uniformity in the rubber matrix,which has a great effect on the reinforcement of rubber[3].展开更多
A novel multicomponent high-Cr CoNi-based superalloy with superior comprehensive performance was prepared,and the evaluation of its high-temperature microstructural stability,oxidation resistance,and mechanical proper...A novel multicomponent high-Cr CoNi-based superalloy with superior comprehensive performance was prepared,and the evaluation of its high-temperature microstructural stability,oxidation resistance,and mechanical properties was conducted mainly using its cast polycrystalline alloy.The results disclosed that the morphology of theγ′phase remained stable,and the coarsening rate was slow during the long-term aging at 900–1000℃.The activation energy forγ′precipitate coarsening of alloy 9CoNi-Cr was(402±51)kJ/mol,which is higher compared with those of CMSX-4 and some other Ni-based and Co-based superalloys.Importantly,there was no indica-tion of the formation of topologically close-packed phases during this process.All these factors demonstrated the superior microstructural stability of the alloy.The mass gain of alloy 9CoNi-Cr was 0.6 mg/cm^(2) after oxidation at 1000℃ for 100 h,and the oxidation resistance was comparable to advanced Ni-based superalloys CMSX-4,which can be attributed to the formation of a continuous Al_(2)O_(3) protective layer.Moreover,the compressive yield strength of this cast polycrystalline alloy at high temperatures is clearly higher than that of the conventional Ni-based cast superalloy and the compressive minimum creep rate at 950℃ is comparable to that of the conventional Ni-based cast superalloy,demonstrating the alloy’s good mechanical properties at high temperature.This is partially because high Cr is bene-ficial in improving theγandγ′phase strengths of alloy 9CoNi-Cr.展开更多
Mg_(97)Zn_(1)Y_(2)alloys with high ignition temperatures were developed by adding Sr.The addition of Sr resulted in the formation of a uniform and thin Y_(2)O_(3)film.Mg–Zn–Y alloys containing at least 0.25 at.%Sr e...Mg_(97)Zn_(1)Y_(2)alloys with high ignition temperatures were developed by adding Sr.The addition of Sr resulted in the formation of a uniform and thin Y_(2)O_(3)film.Mg–Zn–Y alloys containing at least 0.25 at.%Sr exhibited ignition temperatures of 1270–1320 K.As a result of EDS measurement,Sr was found to be concentrated in the Y_(2)O_(3)film.In addition,a mixed film of MgO and Sr O formed on the outer layer in the 1.5 at.%Sr-containing Mg_(97)Zn_(1)Y_(2)alloy.These findings suggest that the uniform and thin Y_(2)O_(3)film that maintains high soundness at high temperatures was formed owing to valence control and the formation of a protective outer oxide film.展开更多
Oxide ceramic coatings were fabricated on tantalum alloys by micro-arc oxidation (MAO) to improve their hardness and tribological properties. The MAO coatings were manufactured in a mixed silicatephosphate electrolyte...Oxide ceramic coatings were fabricated on tantalum alloys by micro-arc oxidation (MAO) to improve their hardness and tribological properties. The MAO coatings were manufactured in a mixed silicatephosphate electrolyte containing NaF and/or EDTA (ethylene diamine tetraacetic acid). The surface morphology,cross-sectional view, chemical composition, hardness, and wear performance of the coatings were analysed. As revealed by the scanning electron microscopy, silica-rich nodules appear on the MAO coating obtained in the silicate-phosphate electrolyte, but the formation of nodules is inhibited with NaF and/or EDTA in the electrolyte.Also, they reduce the roughness and improve the compactness of the coatings, which are composed of Ta_(2)O_(5),(Ta, O), and TaO. A thick and hard coating is obtained in the NaF-containing electrolyte, and the tribology performance is effectively improved. With additives, the nodule structure is detached from the coating surface and dissolved in the electrolyte. By using NaF as an electrolyte additive, the abrasion performance of the MAO coating is enhanced by decreasing the nodule structure, increasing the size of micropores, and improving the coating hardness.展开更多
基金The authors gratefully acknowledge the financial support of the Natural Science Foundation of China,China(Grant No.21975082 and 21736003)the Guangdong Basic and Applied Basic Research Foundation(Grant Number:2019A1515011472 and 2022A1515011341)the Science and Technology Program of Guangzhou(Grant Number:202102080479).
文摘In order to better understand the specific substituent effects on the electrochemical oxidation process of β-O-4 bond, a series of methoxyphenyl type β-O-4 dimer model compounds with different localized methoxyl groups, including 2-(2-methoxyphenoxy)-1-phenylethanone, 2-(2-methoxyphenoxy)-1-phenylethanol, 2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)ethanone, 2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)ethanol, 2-(2,6-dimethoxyphenoxy)-1-(4-methoxyphenyl)ethanone, 2-(2,6-dimethoxyphenoxy)-1-(4-methoxyphenyl)ethanol have been selected and their electrochemical properties have been studied experimentally by cyclic voltammetry, and FT-IR spectroelectrochemistry. Combining with electrolysis products distribution analysis and density functional theory calculations, oxidation mechanisms of all six model dimers have been explored. In particular, a total effect from substituents of both para-methoxy(on the aryl ring closing to Cα) and Cα-OH on the oxidation mechanisms has been clearly observed, showing a significant selectivity on the Cα-Cβbond cleavage induced by electrochemical oxidations.
基金supported by the National Natural Science Foundation of China (Grant Nos.52072272,52171145 and 22109120)the Zhejiang Provincial Natural Science Foundation of China (LQ21B030002)+1 种基金the Zhejiang Provincial Special Support Program for High-level Talents (2019R52042)the Key programs for Science and Technology Innovation of Wenzhou (ZG2022037)。
文摘The scarcity,high cost and susceptibility to CO of Platinum severely restrict its application in alkaline hydrogen oxidation reaction(HOR).Hybridizing Pt with other transition metals provides an effective strategy to modulate its catalytic HOR performance,but at the cost of mass activity due to the coverage of modifiers on Pt surface.Herein,we constructed dual junctions'Pt/nitrogen-doped carbon(Pt/NC)andδ-MoC/NC to modify electronic structure of Pt via interfacial electron transfer to acquire Pt-MoC@NC catalyst with electron-deficient Pt nanoparticles,simultaneously endowing it with high mass activity and durability of alkaline HOR.Moreover,the unique structure of Pt-MoC@NC endows Pt with a high COtolerance at 1,000 ppm CO/H_(2),a quality that commercial Pt-C catalyst lacks.The theoretical calculations not only confirm the diffusion of electrons from Pt/NC to Mo C/NC could occur,but also demonstrate the negative shift of Pt d-band center for the optimized binding energies of*H,*OH and CO.
基金supported by the Central South University Scientific Research Foundation for Post-doctor(Grant No.:140050052)the National Natural Science Foundation of China(Grant No.:52204325)
文摘Owing to the intrinsically sluggish kinetics of urea oxidation reaction(UOR)involving a six-electron transfer process,developing efficient UOR electrocatalyst is a great challenge remained to be overwhelmed.Herein,by taking advantage of 2-Methylimidazole,of which is a kind of alkali in water and owns strong coordination ability to Co^(2+)in methanol,trace Co(1.0 mol%)addition was found to induce defect engineering onα-Ni(OH)_(2)in a dual-solvent system of water and methanol.Physical characterization results revealed that the synthesized electrocatalyst(WM-Ni_(0.99)Co_(0.01)(OH)_(2))was a kind of defective nanosheet with thickness around 5-6 nm,attributing to the synergistic effect of Co doping and defect engineering,its electron structure was finely altered,and its specific surface a rea was tremendously enlarged from 68 to 172.3 m^(2)g^(-1).With all these merits,its overpotential to drive 10 mA cm^(-2)was reduced by 110 mV.Besides,the interfacial behavior of UOR was also well deciphered by operando electrochemical impedance spectroscopy.
基金supported by the National Natural Science Foundation of China(21872040,22162004)the Excellent Scholars and Innovation Team of Guangxi Universities,the Innovation Project of Guangxi Graduate Education(YCBZ2022038)the High-performance Computing Platform of Guangxi University.
文摘Exploitation of oxygen evolution reaction(OER)and urea oxidation reaction(UOR)catalysts with high activity and stability at large current density is a major challenge for energy-saving H_(2) production in water electrolysis.Herein,we use the pyridinic-N doping carbon layers coupled with tensile strain of FeNi alloy activated by NiFe_(2)O_(4)(FeNi/NiFe_(2)O_(4)@NC)for efficiently increasing the performance of water and urea oxidation.Due to the tensile strain effect on FeNi/NiFe_(2)O_(4)@NC,it provides a favorable modulation on the electronic properties of the active center,thus enabling amazing OER(η_(100)=196 mV)and UOR(E_(10)=1.32 V)intrinsic activity.Besides,the carbon-coated layers can be used as armor to prevent FeNi alloy from being corroded by the electrolyte for enhancing the OER/UOR stability at large current density,showing high industrial practicability.This work thus provides a simple way to prepare high-efficiency catalyst for activating water and urea oxidation.
基金supported by the National Natural Science Foundation of China[grant numbers 42277095 and 42021004].
文摘Surface ozone(O_(3))poses significant threats to public health,agricultural crops,and plants in natural ecosystems.Global warming is likely to increase future O_(3)mainly by altering atmospheric photochemical reactions and enhancing biogenic volatile organic compound(BVOC)emissions.To assess the impacts of the future 1.5 K climate target on O_(3)concentrations and ecological O_(3)exposure in China,numerical simulations were conducted using the CMAQ(Community Multiscale Air Quality)model during April-October 2018.Ecological O_(3)exposure was estimated using six indices(i.e.,M7,M24,N100,SUM60,W126,and AOT40f).The results show that the temperature rise increases the MDA8 O_(3)(maximum daily eight-hour average O_(3))concentrations by∼3 ppb and the number of O_(3)exceedance days by 10-20 days in the North China Plain(NCP),Yangtze River Delta(YRD),and Sichuan Basin(SCB)regions.All O_(3)exposure indices show substantial increases.M24 and M7 in eastern and southern China will rise by 1-3 ppb and 2-4 ppb,respectively.N100 increases by more than 120 h in the surrounding regions of Beijing.SUM60 increases by greater than 9 ppm h^(−1),W126 increases by greater than 15 ppm h^(−1)in Shaanxi and SCB,and AOT40f increases by 6 ppm h^(−1)in NCP and SCB.The temperature increase also promotes atmospheric oxidation capacity(AOC)levels,with the higher AOC contributed by OH radicals in southern China but by NO_(3)radicals in northern China.The change in the reaction rate caused by the temperature increase has a greater influence on O_(3)exposure and AOC than the change in BVOC emissions.
基金supported by the National Natural Science Foundation of China(No.22209035)the Major Science and Technology Projects of Yunnan Province(No.202302AH360001)the Natural Science Foundation of Hebei Province(No.E2020202091).
文摘RuO_(2) has been considered a potential alternative to commercial IrO_(2) for the oxygen evolution reaction(OER)due to its superior intrinsic activity.However,its inherent structure dissolution in acidic environments restricts its commercial applications.In this study,we report a novel Pd-doped ruthenium oxide(Pd–RuO_(2))nanosheet catalyst that exhibits improved activity and stability through a synergistic effect of Pd modulation of Ru electronic structure and the two-dimensional structure.The catalyst exhibits excellent performance,achieving an overpotential of only 204 mVat a current density of 10 mA cm^(-2).Impressively,after undergoing 8000 cycles of cyclic voltammetry testing,the overpotential merely decreased by 5 mV.The PEM electrolyzer with Pd0.08Ru0.92O_(2) as an anode catalyst survived an almost 130 h operation at 200 mA cm^(-2).To elucidate the underlying mechanisms responsible for the enhanced stability,we conducted an X-ray photoelectron spectroscopy(XPS)analysis,which reveals that the electron transfer from Pd to Ru effectively circumvents the over-oxidation of Ru,thus playing a crucial role in enhancing the catalyst's stability.Furthermore,density functional theory(DFT)calculations provide compelling evidence that the introduction of Pd into RuO_(2) effectively modulates electron correlations and facilitates the electron transfer from Pd to Ru,thereby preventing the overoxidation of Ru.Additionally,the application of the two-dimensional structure effectively inhibited the aggregation and growth of nanoparticles,further bolstering the structural integrity of the catalyst.
基金the National Major Science and Technology Projects of China(Nos.J2019-VII-0010-0150 and J2019-VI-0009-0123)National Natural Science Foundation of China(Nos.52022011 and 52090041)+3 种基金Beijing Nova Program(No.Z211100002121170)Science Center for Gas Turbine Project(No.P2021-A-IV-001-002)Science and Technology on Advanced High Temperature Structural Materials Laboratory(No.6142903210306)Xiaomi Young Scholars Program.
文摘Co-Ni-based superalloys are known for their capability to function at elevated temperatures and superior hot corrosion and thermal fatigue resistance.Therefore,these alloys show potential as crucial high-temperature structural materials for aeroengine and gas turbine hot-end components.Our previous work elucidated the influence of Ti and Ta on the high-temperature mechanical properties of alloys.However,the intricate interaction among elements considerably affects the oxidation resistance of alloys.In this paper,Co-35Ni-10Al-2W-5Cr-2Mo-1Nb-xTi-(5−x)Ta alloys(x=1,2,3,4)with varying Ti and Ta contents were designed and compounded,and their oxidation resistance was investigated at the temperature range from 800 to 1000℃.After oxidation at three test conditions,namely,800℃for 200 h,900℃for 200 h,and 1000℃for 50 h,the main structure of the oxide layer of the alloy consisted of spinel,Cr_(2)O_(3),and Al_(2)O_(3)from outside to inside.Oxides consisting of Ta,W,and Mo formed below the Cr_(2)O_(3)layer.The interaction of Ti and Ta imparted the highest oxidation resistance to 3Ti2Ta alloy.Conversely,an excessive amount of Ti or Ta resulted in an adverse effect on the oxidation resistance of the alloys.This study reports the volatilization of W and Mo oxides during the oxidation process of Co-Ni-based cast superalloys with a high Al content for the first time and explains the formation mechanism of holes in the oxide layer.The results provide a basis for gaining insights into the effects of the interaction of alloying elements on the oxidation resistance of the alloys they form.
文摘Vegetable oils are a source of energy, essential fatty acids, antioxidants and fat-soluble vitamins useful for human health care and development. These oils also contribute to organoleptic quality of their products’ derivatives. However, their chemical and physical properties can be modified by the mode of their extraction, storage and distribution. These modifications might negatively affect the nutritional quality of the oils. The goals of this study were to: sample different vegetable oils for cosmetic or dietary use marketed in Cameroon, and verify purity and oxidation states of each kind of oil through determination of its acidity, iodine, peroxide, saponification, refractive indexes and the conformity of the labeling. The carotene content, the level of polar components and specific absorbance were also determined. As the result, six oils namely palm, palm kernel, coconut, black cumin, peanut and shea butter were collected. Apart from labeling, chemicals and physicals parameters analyzed were generally in accordance with the Cameroonian and Codex Alimentarius standard. This study suggests that vegetable oils sampled in the Cameroonian market may not expose consumers to lipid oxidation products generating pathological oxidative stress and inflammation. However, efforts in application of existing standard need to be done as far as labeling are concerned.
基金study received financial support from the National Natural Science Foundation of China(No.U22B2065),EditChecks(https://editchecks.com.cn/)for providing linguistic assistance during the preparation of this manuscript.
文摘Safe emplacement of high-level nuclear waste(HLNW)arising from the utilization of nuclear power is a frequently en-countered and considerably challenging issue.The widely accepted and feasible approach for the permanent disposal of HLNW involves housing it in a corrosion-resistant container and subsequently burying it deep in a geologic repository.The focus lies on ensuring the dur-ability and integrity of the container in this process.This review introduces various techniques and strategies employed in controlling the corrosion of used fuel containers(UFCs)using copper(Cu)as corrosion barrier in the context of deep geological disposal.Overall,these corrosion prevention techniques and methods have been effectively implemented and employed to successfully mitigate the corrosion challenges encountered during the permanent disposal of Cu containers(e.g.,corrosion mechanisms and corrosion parameters)in deep geologic repositories.The primary objective of this review is to provide an extensive examination of the alteration in the corrosion envir-onment encountered by the UFCs when subjected to deep geologic repository conditions and focusing on addressing the potential corro-sion scenarios.
基金supported by the National Key Research and Development Program of China (2022YFB3803600)the National Natural Science Foundation of China (22302067)+2 种基金the Innovation Program of Shanghai Municipal Education Commission (2021-0107-00-02-E00106)the Science and Technology Commission of Shanghai Municipality (22230780200,20DZ2250400)Fundamental Research Funds for the Central Universities (222201717003)。
文摘Photocatalytic water oxidation is a crucial counter-electrode reaction in the process of photoelectrochemical energy conversion.Despite its importance,challenges remain in effectively and sustainably converting water to oxygen,particularly with readily available and inexpensive electrolyte solutions such as seawater.While metal oxide materials have demonstrated their advantages in promoting efficiency by reducing overpotential and improving light utilization,stability remains limited by corrosion in multicomponent seawater.In this paper,we reviewed the relationship between four basic concepts including photoelectrochemistry,metal oxide,water oxidation and seawater to better understand the challenges and opportunities in photoelectrochemical(PEC)seawater oxidation.To overcome these challenges,the advances in material design,interfacial modification,local environment control and reactor design have been further reviewed to benefit the industrial PEC seawater oxidation.Noticeably,we demonstrate engineered layered metal oxide electrodes and cell structures that enable powerful and stable seawater oxidation.We also outline and advise on the future direction in this area.
文摘Introduction: Not all medicines that pass-through consumers’ hands are used, and some often expire in households. These health products can be sources of accidental risks and pollution when they are not properly disposed of. In Burkina Faso, there are as yet no guidelines for the disposal of unused medicines in households. The aim of this study was to estimate the extent of household possession of unused or expired medicines, and to describe attitudes and disposal practices. Methods: This was a descriptive cross-sectional study covering households in the Ouagadougou commune conducted from June to August 2021. Two-stage stratified sampling was used: selection of Enumeration Zones (EZs) and selection of households, with each EZ comprising several households. Data collection was based on direct interviews using a structured questionnaire. Data were processed using Epi Info software version 7.2.4.0. Results: In total, 417 household residents were surveyed out of the planned 423 households, corresponding to a completion rate of 98.58% compared with the initial sample. Among the respondents, 79.62% had unused and/or expired medicines in their household. A total of 2562 drug packaging units were counted, for a total weight of 121.90 kg. Nearly 75% were aware that improper disposal was a danger to the environment. Some respondents kept their unused medicines at home until they expired (43.41%), and disposed of them mainly by throwing them in the household garbage (75.58%). The majority (79%) were in favor of the government setting up a take-back program for these medicines. Conclusion: The introduction of a take-back program for unused or out-of-date medicines will ensure safer disposal of medicines, and better protection for households and the environment.
文摘Background: Handling of medicines is a day-to-day activity by patients and many health care providers. However, multiple studies have brought to light inappropriate disposal methods for expired and unused medication (EUM). Improper disposal of expired and unused medicines is hazardous both to humans and the environment. Objective: This sought to measure patients’ knowledge, attitude, and practices on disposal methods of EUM. Methods: A cross-sectional study was carried out among 384 patients at three outpatient pharmacies at the University Teaching Hospitals (UTHs). The structured questionnaire was used to collect data and STAT version 15.1 was used to analyse the data. Results: 384 respondents participated in this study and, at some point, had EUM. In this study, 356 (92.7%) of the participants reported that they had never heard of a drug take-back system. Most of the participants 285 (74.2%) and 239 (62.2%) kept and donated their unused medicine, respectively. Additionally, 244 (63.5%), 212 (55.2%), and 176 (44.8%) of the participants disposed of expired medicines in the bin or garbage, flushed them in toilets or sinks, or burned them, respectively. Occupation was significantly associated with unsafe disposal of unused medicine [P-value = 0.019]. Conclusion and Relevance: Knowledge of safe disposal methods for EUM was good amongst most participants. However, used unsafe disposal methods. The majority of the participants exhibited positive attitude concerning safe disposal methods. This study highlights the need for drug-take-back program creation in Zambia.
基金financially supported by the National Science and Technology Major Project of China (Nos.MJ-2018-G-48,J2019-Ⅵ-0023-0140)the Research Fund of the State Key Laboratory of Solidification Processing (NPU),China (No.2022-TS-04)。
文摘The high-temperature oxidation behaviour of the Inconel 625 alloy at 950℃ was investigated after different ageing treatments.The effect of heat treatment on the oxidation behaviour of the alloy was analysed by characterizing the structure and elemental distribution before and after oxidation.The results reveal that the two ageing treatments at 650℃ for 500 h and at 750℃ for 400 h both reduced the oxidation mass gain.After oxidation at 950℃,an outer Cr_(2)O_(3) layer and inner Al_(2)O_(3) are identified as the main oxidation products.Moreover,Nb_(2)O_(5) andδ(Ni_(3)Nb)phases precipitated after oxidation.The ageing treatments cause the rapid generation of a dense Cr_(2)O_(3) layer on the surface,which prevents the diffusion of oxygen into the matrix,reduce the Al_(2)O_(3) inward growth depth,and improve the oxidation resistance of the alloy.
基金the SINOPEC(124015)and the State Key Laboratory of Engines at Tianjin University(No.K2022-06).
文摘The aim of this study was to investigate the oxidation reactivity and behavior of exhaust particulate matter(PM)from diesel engines.PM samples from two diesel engines(1K,CY4102)with different emission levels were collected by a thermophoretic system and a quartz filter.The oxidation reactivity,oxidation behaviors,and physicochemical properties of the PM samples were analyzed using thermogravimetric analysis(TGA),high-resolution transmission electron microscopy(HRTEM),Fourier-transform infrared spectrometry(FTIR),and Raman spectroscopy.The results showed that there was a great difference in the oxidation reactivity of soot particles emitted by the two different diesel engines.A qualitative analysis of the factors influencing oxidation reactivity showed that the nanostructure,degree of graphitization,and relative concentration of aliphatic C—H functional groups were the most important factors,whereas no significant correlation was found between the primary particle size and activation energy of the diesel soot.Based on the oxidation behavior analysis,the diesel soot particles exhibited both internal and surface oxidation modes during the oxidation process.Surface oxidation was dominant during the initial stage,and as oxidation progressed,the mode gradually changed to internal oxidation.Internal oxidation mode of soot particles from the 1K engine was significantly higher than that of CY4102.
基金Project(cstb2022nscq-msx0801)supported by the Natural Science Foundation of Chongqing,ChinaProject(52004044)supported by the National Natural Science Foundation of China+2 种基金Project(ckrc2022030)supported by the Foundation of Chongqing University of Science and Technology,ChinaProject(YKJCX2220216)supported by the Graduate Research Innovation Project of Chongqing University of Science and Technology,ChinaProject(202311551007)supported by the National Undergraduate Training Program for Innovation and Entrepreneurship,China。
文摘The oxidation behavior of ferrovanadium spinel(FeV_(2)O_(4)),synthesized via high-temperature solid-state reaction,was investigated using thermogravimetry,X-ray diffractometry,and X-ray photoelectron spectroscopy over the temperature range of 450–700℃.The results revealed that the oxidation process of FeV_(2)O_(4)can be divided into three stages with the second stage being responsible for maximum weight gain due to oxidation.Three classical methods were employed to analyze the reaction mechanisms and model functions for distinct oxidation stages.The random nucleation and subsequent growth(A_(3))kinetic model was found to be applicable to both initial and secondary stage.The third stage of oxidation was consistent with the three-dimensional diffusion,spherical symmetry(D_(3))kinetic mode.Both the model-function method and the model-free method were utilized to investigate the apparent activation energy of the oxidation reaction at each stage.It was found that the intermediates including Fe_(3)O_(4),VO_(2),V_(2)O_(3),and Fe_(2.5)V_(7.11)O_(16),played significant roles in the oxidation process prior to the final formation of FeVO_(4)and V_(2)O_(5)through oxidation of FeV_(2)O_(4).
基金The National Natural Science Foundation of China under contract Nos 91951201 and 42030412the National Key R&D Program of China under contract No.2021YFF0501304the Scientific Research Foundation of Third Institute of Oceanography,MNR under contract No.2019021.
文摘The genus Marinobacter is very broadly distributed in global environments and is considered as aerobic heterotroph.In this study,six Marinobacter strains were identified with autotrophic thiosulfate oxidation capacity.These strains,namely Marinobacter guineae M3B^(T),Marinobacter aromaticivorans D15-8PT,Marinobacter vulgaris F01^(T),Marinobacter profundi PWS21^(T),Marinobacter denitrificans JB02H27T,and Marinobacter sp.ST-1M(with a 99.93%similarity to the 16S rDNA sequences of Marinobacter salsuginis SD-14B^(T)),were screened out of 32 Marinobacter strains by autotrophic thiosulfate oxidization medium.The population of cells grew in a chemolithotrophic medium,increasing from 105 cells/mL to 10^(7) cells/mL within 5 d.This growth was accompanied by the consumption of thiosulfate 3.59 mmol/L to 9.64 mmol/L and the accumulation of sulfate up to 0.96 mmol/L,and occasionally produced sulfur containing complex particles.Among these Marinobacter strains,it was also found their capability of oxidizing thiosulfate to sulfate in a heterotrophic medium.Notably,M.vulgaris F01^(T)and M.antarcticus ZS2-30^(T)showed highly significant production of sulfate at 9.45 mmol/L and 3.10 mmol/L.Genome annotation indicated that these Marinobacter strains possess a complete Sox cluster for thiosulfate oxidation.Further phylogenetic analysis of the soxB gene revealed that six Marinobacter strains formed a separate lineage within Gammaproteobacteria and close to obligate chemolithoautotroph Thiomicrorhabdus arctica.The results indicated that thiosulfate oxidizing and chemolithoautotrophic potential in Marinobacter genus,which may contribute to the widespread of Marinobacter in the global ocean.
基金Supported by Shanghai Aerospace Science and Technology Innovation Fund Project (SAST 2022-097)。
文摘Graphene oxide(GO)has proven to be an effective reinfor-cing filler for rubber[1].GO has superior mechanical properties,barrier properties,large specific surface area and abundant oxygen-containing functional groups[2].However,the change in the oxidation degree of GO has a great effect on its chemical properties,the interaction between GO and the matrix,and the dispersion uniformity in the rubber matrix,which has a great effect on the reinforcement of rubber[3].
基金supported by the National Natural Science Foundation of China(Nos.52331005,52201100,52171095,and 92060113)the China Postdoctoral Science Foundation(No.2022M710346)+2 种基金Science and Technology on Advanced High Temperature Structural Materials Laboratory,China(No.6142903210207)the Fundamental Research Funds for the Central Universities,China(No.FRF-GF-20-30B)the National Key Research and Development Program of China(No.2017YFB0702902).
文摘A novel multicomponent high-Cr CoNi-based superalloy with superior comprehensive performance was prepared,and the evaluation of its high-temperature microstructural stability,oxidation resistance,and mechanical properties was conducted mainly using its cast polycrystalline alloy.The results disclosed that the morphology of theγ′phase remained stable,and the coarsening rate was slow during the long-term aging at 900–1000℃.The activation energy forγ′precipitate coarsening of alloy 9CoNi-Cr was(402±51)kJ/mol,which is higher compared with those of CMSX-4 and some other Ni-based and Co-based superalloys.Importantly,there was no indica-tion of the formation of topologically close-packed phases during this process.All these factors demonstrated the superior microstructural stability of the alloy.The mass gain of alloy 9CoNi-Cr was 0.6 mg/cm^(2) after oxidation at 1000℃ for 100 h,and the oxidation resistance was comparable to advanced Ni-based superalloys CMSX-4,which can be attributed to the formation of a continuous Al_(2)O_(3) protective layer.Moreover,the compressive yield strength of this cast polycrystalline alloy at high temperatures is clearly higher than that of the conventional Ni-based cast superalloy and the compressive minimum creep rate at 950℃ is comparable to that of the conventional Ni-based cast superalloy,demonstrating the alloy’s good mechanical properties at high temperature.This is partially because high Cr is bene-ficial in improving theγandγ′phase strengths of alloy 9CoNi-Cr.
基金supported by Grants-in-Aid for Scientific Research C(JP21K04693)from JSPS,Japan。
文摘Mg_(97)Zn_(1)Y_(2)alloys with high ignition temperatures were developed by adding Sr.The addition of Sr resulted in the formation of a uniform and thin Y_(2)O_(3)film.Mg–Zn–Y alloys containing at least 0.25 at.%Sr exhibited ignition temperatures of 1270–1320 K.As a result of EDS measurement,Sr was found to be concentrated in the Y_(2)O_(3)film.In addition,a mixed film of MgO and Sr O formed on the outer layer in the 1.5 at.%Sr-containing Mg_(97)Zn_(1)Y_(2)alloy.These findings suggest that the uniform and thin Y_(2)O_(3)film that maintains high soundness at high temperatures was formed owing to valence control and the formation of a protective outer oxide film.
基金Funded by the National Natural Science Foundation of China (No. 51905506)。
文摘Oxide ceramic coatings were fabricated on tantalum alloys by micro-arc oxidation (MAO) to improve their hardness and tribological properties. The MAO coatings were manufactured in a mixed silicatephosphate electrolyte containing NaF and/or EDTA (ethylene diamine tetraacetic acid). The surface morphology,cross-sectional view, chemical composition, hardness, and wear performance of the coatings were analysed. As revealed by the scanning electron microscopy, silica-rich nodules appear on the MAO coating obtained in the silicate-phosphate electrolyte, but the formation of nodules is inhibited with NaF and/or EDTA in the electrolyte.Also, they reduce the roughness and improve the compactness of the coatings, which are composed of Ta_(2)O_(5),(Ta, O), and TaO. A thick and hard coating is obtained in the NaF-containing electrolyte, and the tribology performance is effectively improved. With additives, the nodule structure is detached from the coating surface and dissolved in the electrolyte. By using NaF as an electrolyte additive, the abrasion performance of the MAO coating is enhanced by decreasing the nodule structure, increasing the size of micropores, and improving the coating hardness.