The traditional automotive catalytic converter using commercial ceramic honeycomb carriers has many problems such as high back pressure,low engine efficiency,and high usage of precious metals.This study proposes a fou...The traditional automotive catalytic converter using commercial ceramic honeycomb carriers has many problems such as high back pressure,low engine efficiency,and high usage of precious metals.This study proposes a four-channel catalytic micro-reactor based on alumina hollow fiber membrane,which uses phase inversion method for structural molding and regulation.Due to the advantages of its carrier,it can achieve lower ignition temperature under low noble metal loading.With Pd/CeO_(2) at a loading rate of 2.3%(mass),the result showed that the reaction ignition temperature is even less than 160℃,which is more than 90℃ lower than the data of commercial ceramic substrates under similar catalyst loading and airspeed conditions.The technology in turn significantly reduces the energy consumption of the reaction.And stability tests were conducted under constant conditions for 1000 h,which proved that this catalytic converter has high catalytic efficiency and stability,providing prospects for the design of innovative catalytic converters in the future.展开更多
The isothermal oxidation kinetics of a Co-40Cr alloy and its yttrium ion-implanted samples were studied at 1000℃ in air by thermal-gravity analysis (TGA). Scanning electronic microscopy (SEM) was used to examine ...The isothermal oxidation kinetics of a Co-40Cr alloy and its yttrium ion-implanted samples were studied at 1000℃ in air by thermal-gravity analysis (TGA). Scanning electronic microscopy (SEM) was used to examine the Cr203 oxide film's morphology after oxidation. An acoustic emission (AE) method was used in situ to monitor the cracking and spalling of oxide films formed on samples during oxidation and subsequent aircooling stages. A theoretical model was proposed relating to the film fracture process and was used to analyze the acoustic emission spectrum on time domain and the AE-event number domain. It was found that yttrium implantation remarkably reduced the isothermal oxidation rate of Co-40Cr and improved the anti-cracking and anti-spalling properties of Cr2O3 oxide film. The reasons for the improvement were mainly that the implanted yttrium reduced the grain size of Cr2O3 oxide, increased the high temperature plasticity of oxide film, and remarkably reduced the number and size of Cr203/Co-40Cr interfacial defects.展开更多
Here some steady-state experiments on oxidation of CO on Pd were performed on a molecular beam apparatus. It is found that the characteristics of the rate of CO_2 formation r versus substrate temperature T are depende...Here some steady-state experiments on oxidation of CO on Pd were performed on a molecular beam apparatus. It is found that the characteristics of the rate of CO_2 formation r versus substrate temperature T are dependent on the ratio P=P_(CO)/P_(O2) in the mixed beam. These characteristics are related to the complicated interactions of co-adsorbed CO and O particles on Pd surface.展开更多
The preferential oxidation of CO (CO‐PROX) is a hot topic because of its importance in pro‐ton‐exchange membrane fuel cells (PEMFCs). Au catalysts are highly active in CO oxidation. Howev‐er, their activities ...The preferential oxidation of CO (CO‐PROX) is a hot topic because of its importance in pro‐ton‐exchange membrane fuel cells (PEMFCs). Au catalysts are highly active in CO oxidation. Howev‐er, their activities still need to be improved at the PEMFC operating temperatures of 80–120 °C. In the present study, Au nanoparticles of average size 2.6 nm supported on ceria‐modified Al2O3 were synthesized and characterized using powder X‐ray diffraction, nitrogen physisorption, transmission electron and scanning transmission electron microscopies, temperature‐programmed hydrogen reduction (H2‐TPR), Raman spectroscopy, and in situ diffuse‐reflectance infrared Fourier‐transform spectroscopy. Highly dispersed Au nanoparticles and strong structures formed by Au–support in‐teractions were the main active species on the ceria surface. The Raman and H2‐TPR results show that the improved catalytic performance of the Au catalysts can be attributed to enhanced strong metal–support interactions and the reducibility caused by ceria doping. The formation of oxygen vacancies on the catalysts increased their activities in CO‐PROX. The synthesized Au catalysts gave excellent catalytic performances with high CO conversions (>97%) and CO2 selectivities (>50%) in the temperature range 80–150 °C.展开更多
Co3O4/SiO2 catalysts for CO oxidation were prepared by conventional incipient wetness impregnation followed by calcination at various temperatures. Their structures were char- acterized with X-ray diffraction (XRD),...Co3O4/SiO2 catalysts for CO oxidation were prepared by conventional incipient wetness impregnation followed by calcination at various temperatures. Their structures were char- acterized with X-ray diffraction (XRD), laser Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), temperature-programmed reduction (TPR) and X-ray absorption fine structure (XAFS) spectroscopy. Both XRD and Raman spectroscopy only detect the existence of Co3O4 crystallites in all catalysts. However, XPS results indicate that excess Co2+ ions are present on the surface of Co3O4 in Co3O4(200)/Si02 as compared with bulk Co3O4. Meanwhile, TPR results suggest the presence of surface oxygen vacancies on Co3O4 in Co3O4(200)/SiO2, and XAFS results demonstrate that Co3O4 in Co3O4(200)/SIO2 contains excess Co2+. Increasing calcination temperature results in oxidation of excess Co2+ and the decrease of the concentration of surface oxygen vacancies, consequently the for- mation of stoichiometric Co3O4 on supported catalysts. Among all Co3O4/SiO2 catalysts, Co3O4(200)/SiO2 exhibits the best catalytic performance towards CO oxidation, demonstrating that excess Co2+ and surface oxygen vacancies can enhance the catalytic activity of Co3O4 towards CO oxidation. These results nicely demonstrate the effect of calcination temperature on the structure and catalytic performance towards CO oxidation of silicasupported Co3O4 catalysts and highlight the important role of surface oxygen vacancies on Co3O4.展开更多
Using Fourier Transform Infrared (FTIR) combined with an adiabatic oxidation test, temperature-programmed oxidation and gas analysis, we studied the changes of active functional groups during low-temperature oxidation...Using Fourier Transform Infrared (FTIR) combined with an adiabatic oxidation test, temperature-programmed oxidation and gas analysis, we studied the changes of active functional groups during low-temperature oxidation of lignite, gas coal, fat coal and anthracite. During slow low-temperature heat accumulation, aliphatic hydrocarbons, such as methyl and methylene, are attacked by oxygen atoms absorbed by pores on coal surfaces, generating unstable solid intermediate carbon-oxygen complexes, which then decompose into gaseous products (CO, CO2) and stable solid complexes. At the accelerated oxidation stage, the stable complexes begin to decompose in large amounts and provided new active sites for further oxidation, while the aliphatic structures gained energy and fell from the benzene rings to produce CxHy and H2.展开更多
Different from the classical configuration CuO/CeO2 catalyst,the inverse configuration CeO2 /CuO catalyst (atomic ratio of Ce/Cu=10/100) was prepared by impregnation method.Five calcination temperatures were selecte...Different from the classical configuration CuO/CeO2 catalyst,the inverse configuration CeO2 /CuO catalyst (atomic ratio of Ce/Cu=10/100) was prepared by impregnation method.Five calcination temperatures were selected to investigate the interaction between CeO2 and CuO support.It is found that as calcination temperature increased from 500 to 900 C,sintering of CeO2 particles on the support occurred together with the diffusion of a portion of Ce 4+ ions into CuO crystals,forming solid solution.Formation of interface complex Ce-O-Cu was suggested by TPR measurements.The catalyst calcined at 700 C gives the highest activity for preferential oxidation of CO in excess H2 stream.展开更多
Influence of three different preparation methods, i.e. impregnation, coprecipitation, and inverse coprecipitation, on the preferential oxidation of CO in excess hydrogen (PROX) over CuO-CeO2 catalysts has been inves...Influence of three different preparation methods, i.e. impregnation, coprecipitation, and inverse coprecipitation, on the preferential oxidation of CO in excess hydrogen (PROX) over CuO-CeO2 catalysts has been investigated and CuO-CeO2 catalysts are characterized using BET, XPS, XRD, UV Raman, and TPR techniques. The results show that the catalysts prepared by coprecipitation have smaller particle sizes, well-dispersed CuOx species, more oxygen vacancies, and are more active in the PROX than those prepared by the other methods. However. the inverse coprecipitation depresses the catalytic performance of CuO-CeO2 catalysts and causes the growth of CuO-CeO2 because of different pH value in the precipitation process.展开更多
Electro-oxidation of Ce ( Ⅲ ) to Ce ( Ⅳ ) in parallel plate flow type electrolyzer divided with cation exchange membrane was carried out in nitric acid media at carbon felt anode under galvanostatic conditions. ...Electro-oxidation of Ce ( Ⅲ ) to Ce ( Ⅳ ) in parallel plate flow type electrolyzer divided with cation exchange membrane was carried out in nitric acid media at carbon felt anode under galvanostatic conditions. Carbon felt was used as an anode for its high specific surface area and high oxygen evolution overpotential. Pt coated Ti plates were used as cathode and anode current feeder. The oxidation of 1 mol· L^-1 Ce( Ⅲ ) solution in 2 mol· L^- 1 HNO3 was proceeding with a high current efficiency (92%) until about 80% of Ce( Ⅲ ) was oxidized. Then, oxygen evolution, accompanied by terminal voltage jump, took place, lowering current efficiency. Ce( Ⅲ ) was oxidized up to 90% with current efficiency of 62%. In this mode, strong carbon felt anode oxidation was observed. The wear out of carbon felt was 46% in six consequent runs (6 h of operation). After each run, carbon felt surface had to be renewed with slightly alkaline solution to remove carbon oxidation products and ensure regular operational conditions. When anode surface was blocked, oxygen evolution took place from the beginning of electrolysis due to higher actual current density. The wear out of carbon felt anode could be minimized by means of oxygen evolution prevention. In the case when electrolysis had been stopped before oxygen evolution started (at Ce( Ⅳ ) conversion of about 80% ), the wear out of anode was less than 2% during 6 consequent runs (4 h of operation).展开更多
The Ru/Al2O3 catalysts modified with metal oxide (K20 and La2O3) were prepared v/a incipient wetness impregnation method from RuCl3.nH2O mixed with nitrate loading on Al2O3 support. The activity of catalysts was eva...The Ru/Al2O3 catalysts modified with metal oxide (K20 and La2O3) were prepared v/a incipient wetness impregnation method from RuCl3.nH2O mixed with nitrate loading on Al2O3 support. The activity of catalysts was evaluated under simulative conditions for the preferential oxidation of CO (CO-PROX) from the hydrogen-rich gas streams produced by reforming gas, and the performances of catalysts were investigated by XRD and TPR. The results showed that the activity temperature of the modified catalysts Ru-K20/Al2O3 and Ru-La2O3/Al2O3 were lowered approximately 30℃ compared with pure Ru/Al2O3, and the activity temperature range was widened. The conversion of CO on Ru-K20/Al2O3 and Ru-La2O3/Al2O3 was above 99% at 140-160℃, suitable to remove CO in a hydrogen-rich gas and the selectivity of Ru-La2O3/Al2O3 was higher than that of Ru-K2O/Al2O3in the active temperature range. Slight methanation reaction was detected at 220℃ and above.展开更多
Fourier transform infrared spectroscopy(FTIR) and constant heating rate experiments were performed to study the low temperature oxidation of coal treated by an ionic liquid,1-allyl-3-methylimidazolium chloride.The ine...Fourier transform infrared spectroscopy(FTIR) and constant heating rate experiments were performed to study the low temperature oxidation of coal treated by an ionic liquid,1-allyl-3-methylimidazolium chloride.The inerting effect of the ionic liquid toward the low temperature oxidation process is discussed.The results show that:(1) The hydroxyl content associated with hydrogen bonds,the aliphatic methyl content,the methylene group content,and the ether oxygen bond content are reduced in the treated coal.At the same time the content of aromatic C@C bonds is constant but these chemical bonds weaken and some substituted aromatic hydrocarbon content increases while other types decrease.This demonstrates that(AMIm)Cl dissolves and destroys the coal surface microstructure;(2) The oxygen consumption of the treated coal is less than what is seen in raw coal.The CO,CO 2,C 2 H 4,and C 2 H 6 content from the treated coal is reduced compared to the untreated coal;(3) The apparent activation energy for the oxidizing reaction is different in the treated and raw coals.Micro-structural changes and macroscopic gas production allow us to conclude that(AMIm)Cl can effectively inhibit low temperature oxidation of coal.展开更多
Simultaneous thermal analysis was used to study the influence of Vitamin C as possible chemical additive inhibiting coal oxidation process at low temperature. Some oxidation characteristics of Vitamin C affecting the ...Simultaneous thermal analysis was used to study the influence of Vitamin C as possible chemical additive inhibiting coal oxidation process at low temperature. Some oxidation characteristics of Vitamin C affecting the coal oxidation were investigated at different heating rates. The TG-DSC data show that the impact of Vitamin C on coal oxidation process can be directly evaluated using ignition temperature and critical temperature. Comparison with the effect of water on coal oxidation shows that Vitamin C is more efficient than water. However, the blank experiment conducted with inert a-Al2O3 also suggests that Vitamin C can decompose at about 200 ℃, which limits the usage of Vitamin C on inhibiting coal oxidation.展开更多
Non-isothermal oxidation of brown coal with 5 wt% of Cu(NO3)2, 5 wt% of Ce(NO3)3 and {2.5 wt% Cu(NO3)2 + 2.5 wt% Ce(NO3)3} additives was studied. The introduction of additives was carried out by an incipient wet impre...Non-isothermal oxidation of brown coal with 5 wt% of Cu(NO3)2, 5 wt% of Ce(NO3)3 and {2.5 wt% Cu(NO3)2 + 2.5 wt% Ce(NO3)3} additives was studied. The introduction of additives was carried out by an incipient wet impregnation method to ensure uniform distribution of cerium and copper nitrates within the structure of coal powdery samples (according to SEM and EDX mapping). The samples reactivity was studied in an isothermal oxidation regime at 200 °C (1 h) and by DSC/TGA at 2.5 °C/min heating rate. The additives implementation was found to reduce significantly the oxidation onset temperature (△Ti = 20-55 °C), the samples oxidation delay time (△ti= 2-22 min) and overall duration of the oxidation process (△tc = 8-16 min). The additives efficiency could be graded in accordance with the activation on the coal oxidation in the following row: Cu(NO3)2 >{Cu(NO3)2 + Ce(NO3)3}> Ce(NO3)3. According to the mass spectroscopy, the obtained row of activation correlates well with the initial temperature of the studied nitrate's decomposition (from 190 to 223 °C). A presence of nitrates was found to change significantly the trend of heat release taking place during the oxidation of coal samples (according to DSC/TGA data). The influence of coal morphology and volatiles concern in initial sample on the parameters of the oxidation process was studied as well. Activation energy (Ea) of the coal oxidation was calculated using Coats-Redfern method. Maximum decrease in Ea from 69 to 58 kJ/mol was observed for the samples with Cu(NO3)2. Graphical abstract.展开更多
CuO-CeO2 catalyst prepared with co-precipitation showed high catalytic performance for the preferential oxidation of CO in excess hydrogen(PROX).Influence of pH values in the preparation of CuO-CeO2 on its catalytic...CuO-CeO2 catalyst prepared with co-precipitation showed high catalytic performance for the preferential oxidation of CO in excess hydrogen(PROX).Influence of pH values in the preparation of CuO-CeO2 on its catalytic performance was investigated in this work.The CuO-CeO2 catalyst prepared at pH = 13.03 had the smallest particle size(5.4 nm),the largest surface areas(138m 2/g) and the highest activity with CO conversion of 99.6% at 130 ℃.The CuO-CeO2 catalyst was characterized using BET,XRD and TPR techniques.The results showed that when the pH value of the mixed solution containing Cu and Ce species was properly adjusted,both the adsorption layers and diffusion layers of the formed colloidal particles in hydroxide precursor of CuO-CeO2 were modified,resulting in the better catalytic performance for PROX on the final CuO-CeO2 catalyst展开更多
High performance CuO-CeO2 catalysts for selective oxidation of CO in excess hydrogen were prepared by a hydrothermal method under different preparation conditions and evaluated for catalytic activities and selectiviti...High performance CuO-CeO2 catalysts for selective oxidation of CO in excess hydrogen were prepared by a hydrothermal method under different preparation conditions and evaluated for catalytic activities and selectivities. By changing the ^nCTAB/^nCe ratio and hydrothermal aging time, the catalytic activity of the CuO-CeO2 catalysts increased and the operating temperature window, in which the CO conversion was higher than 99%, was widened. XRD results showed no peaks of CuOx species and Cu-Ce-O solid solution were observed. On the other hand, Cu+ species in the CuO-CeO2 catalysts, which was associated with a strong interaction between copper oxide clusters and cerium oxide and could be favorable for improving the selective oxidation performance of CO in excess H2, were detected by H2-TPR and XPS techniques.展开更多
The CuO-CeO2 catalyst prepared by chelating method has a superior catalytic performance for the preferential oxidation of CO in rich hydrogen, compared with the CuO-CeO2 catalyst prepared by coprecipitation method. Th...The CuO-CeO2 catalyst prepared by chelating method has a superior catalytic performance for the preferential oxidation of CO in rich hydrogen, compared with the CuO-CeO2 catalyst prepared by coprecipitation method. The CO conversions over these catalysts, at 120 ℃ and 120000 ml/(g-h) in the absence of CO2 and H2O, are 99.6% and 88.6%, respectively, and the selectivity of O2 over these catalysts is very close (i.e. 51.3% and 55.8%, respectively). The influence of certain factors such as hydrogen concentration, carbon monoxide concentration, H2O, O2/CO ratios, and space velocity on the catalytic performance of CuO-CeO2 catalyst prepared by chelating method is also studied. The results show that the addition of hydrogen and H2O has a negative effect on the catalytic performance of CuO-CeO2 catalyst, however, the variation of space velocity and the O2/CO ratio causes a comparatively slight influence.展开更多
A very active catalyst of CuO/CeO_2 was made by adsorption-impregnation method for preferential oxidation of CO in H_2. The CO conversion is close to 100% and selectivity to CO oxidation is 96% over this catalyst at a...A very active catalyst of CuO/CeO_2 was made by adsorption-impregnation method for preferential oxidation of CO in H_2. The CO conversion is close to 100% and selectivity to CO oxidation is 96% over this catalyst at a low reaction temperature of 95 ℃ and a space velocity of 40000 cm^3·g^(-1)·h^(-1) in the reaction mixture of 1%CO, 1%O_2, and 50%H_2 balanced with N_2. The effect of preparation conditions on catalytic performances was investigated. The catalytic performance of the CuO/CeO_2 catalysts was compared with that of other CO preferential oxidation catalysts reported in literature.展开更多
A series of mesoporous Cu-Mn-Al2O3(CMA) materials was synthesized at moderate temperature and their structures were characterized by XRD, N2 physical adsorption and TPR techniques. It was found that using metal comp...A series of mesoporous Cu-Mn-Al2O3(CMA) materials was synthesized at moderate temperature and their structures were characterized by XRD, N2 physical adsorption and TPR techniques. It was found that using metal complex ion[Cu(NH3) 4^2+-Mn(NH3)6^2+] as raw materials is easier to form good-structure mesoporous Cu-Mn-Al2O3 materials than using its nitrate salt [Cu(NO3)2-Mn(NO3)2]. The TPR tests results indicate that CuO and MnOx were homogeneously dispersed in the mesoporous materials. Their catalytic application to preferential catalytic oxidation of CO in a hydrogen-rich stream was studied. The activity varies in the order of CMA(1:1, molar ratio)〉 CMA(1:2)〉CMA(2:1)〉CMA(CP)〉CMA(1:0)≈CMA(0:1). The CMA(1:0) and CMA(0:1) have lower activity compared to other samples, implying that there existed coordination effect between Cu-Mn in the samples. The selectivity varied in the order of CMA(0:1)≥CMA(1:2)〉CMA(1:1)〉CMA(2:1)〉CMA(1:0) at higher temperature (≥ 120 ℃), indicating that increasing the Cu content enhanced the conversion of H2. The sample CMA(CP) made by coprecipitation method has a lower CO oxidation activity and selectivity than its counter-parts of mesoporous Cu-Mn-Al2O3 materials[CMA(1:2)], this attributed to the lower surface area of the former and poor interaction of CuO with MnOx.展开更多
Electrodeposited Ni matrix/Al microparticles or nanoparticles dispersed composite coatings (termed as EMCCs or ENCCs) are developed from a Ni-based electrolyte bath. The Al microparticles are in a size range of 1 -5 ...Electrodeposited Ni matrix/Al microparticles or nanoparticles dispersed composite coatings (termed as EMCCs or ENCCs) are developed from a Ni-based electrolyte bath. The Al microparticles are in a size range of 1 -5 μm and the Al nanoparticles in an average size of 75 nm. The Al content in coatings increases with increase in the particle content in the bath. Particle size effect on the degree of codeposition is not significant. However, codeposition of Al nanoparticles instead of microparticles promotes more homogenous growth of Ni deposits on {111}, {200} and {220} planes. The oxidation at 1 050 ℃ of the as-deposited composite coatings shows that at a comparable Al content, ENCC of Ni-Al exhibits a better oxidation resistance than EMCC of Ni-Al due to the fast formation of an alumina scale during the transient stage of oxidation.展开更多
基金funded by the Natural Science Foundation of Jiangsu Province(BK20210252)。
文摘The traditional automotive catalytic converter using commercial ceramic honeycomb carriers has many problems such as high back pressure,low engine efficiency,and high usage of precious metals.This study proposes a four-channel catalytic micro-reactor based on alumina hollow fiber membrane,which uses phase inversion method for structural molding and regulation.Due to the advantages of its carrier,it can achieve lower ignition temperature under low noble metal loading.With Pd/CeO_(2) at a loading rate of 2.3%(mass),the result showed that the reaction ignition temperature is even less than 160℃,which is more than 90℃ lower than the data of commercial ceramic substrates under similar catalyst loading and airspeed conditions.The technology in turn significantly reduces the energy consumption of the reaction.And stability tests were conducted under constant conditions for 1000 h,which proved that this catalytic converter has high catalytic efficiency and stability,providing prospects for the design of innovative catalytic converters in the future.
基金The Natural Science Foundation of Higher EducationInstitutions of Jiangsu Province (No.04KJB510073).
文摘The isothermal oxidation kinetics of a Co-40Cr alloy and its yttrium ion-implanted samples were studied at 1000℃ in air by thermal-gravity analysis (TGA). Scanning electronic microscopy (SEM) was used to examine the Cr203 oxide film's morphology after oxidation. An acoustic emission (AE) method was used in situ to monitor the cracking and spalling of oxide films formed on samples during oxidation and subsequent aircooling stages. A theoretical model was proposed relating to the film fracture process and was used to analyze the acoustic emission spectrum on time domain and the AE-event number domain. It was found that yttrium implantation remarkably reduced the isothermal oxidation rate of Co-40Cr and improved the anti-cracking and anti-spalling properties of Cr2O3 oxide film. The reasons for the improvement were mainly that the implanted yttrium reduced the grain size of Cr2O3 oxide, increased the high temperature plasticity of oxide film, and remarkably reduced the number and size of Cr203/Co-40Cr interfacial defects.
基金Project supported by National Natural Science Foundation of China
文摘Here some steady-state experiments on oxidation of CO on Pd were performed on a molecular beam apparatus. It is found that the characteristics of the rate of CO_2 formation r versus substrate temperature T are dependent on the ratio P=P_(CO)/P_(O2) in the mixed beam. These characteristics are related to the complicated interactions of co-adsorbed CO and O particles on Pd surface.
基金supported by the National Basic Research Program of China (973 Program, 2013CB934104)the National Natural Science Founda-tion of China (21225312, U1303192)~~
文摘The preferential oxidation of CO (CO‐PROX) is a hot topic because of its importance in pro‐ton‐exchange membrane fuel cells (PEMFCs). Au catalysts are highly active in CO oxidation. Howev‐er, their activities still need to be improved at the PEMFC operating temperatures of 80–120 °C. In the present study, Au nanoparticles of average size 2.6 nm supported on ceria‐modified Al2O3 were synthesized and characterized using powder X‐ray diffraction, nitrogen physisorption, transmission electron and scanning transmission electron microscopies, temperature‐programmed hydrogen reduction (H2‐TPR), Raman spectroscopy, and in situ diffuse‐reflectance infrared Fourier‐transform spectroscopy. Highly dispersed Au nanoparticles and strong structures formed by Au–support in‐teractions were the main active species on the ceria surface. The Raman and H2‐TPR results show that the improved catalytic performance of the Au catalysts can be attributed to enhanced strong metal–support interactions and the reducibility caused by ceria doping. The formation of oxygen vacancies on the catalysts increased their activities in CO‐PROX. The synthesized Au catalysts gave excellent catalytic performances with high CO conversions (>97%) and CO2 selectivities (>50%) in the temperature range 80–150 °C.
文摘Co3O4/SiO2 catalysts for CO oxidation were prepared by conventional incipient wetness impregnation followed by calcination at various temperatures. Their structures were char- acterized with X-ray diffraction (XRD), laser Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), temperature-programmed reduction (TPR) and X-ray absorption fine structure (XAFS) spectroscopy. Both XRD and Raman spectroscopy only detect the existence of Co3O4 crystallites in all catalysts. However, XPS results indicate that excess Co2+ ions are present on the surface of Co3O4 in Co3O4(200)/Si02 as compared with bulk Co3O4. Meanwhile, TPR results suggest the presence of surface oxygen vacancies on Co3O4 in Co3O4(200)/SiO2, and XAFS results demonstrate that Co3O4 in Co3O4(200)/SIO2 contains excess Co2+. Increasing calcination temperature results in oxidation of excess Co2+ and the decrease of the concentration of surface oxygen vacancies, consequently the for- mation of stoichiometric Co3O4 on supported catalysts. Among all Co3O4/SiO2 catalysts, Co3O4(200)/SiO2 exhibits the best catalytic performance towards CO oxidation, demonstrating that excess Co2+ and surface oxygen vacancies can enhance the catalytic activity of Co3O4 towards CO oxidation. These results nicely demonstrate the effect of calcination temperature on the structure and catalytic performance towards CO oxidation of silicasupported Co3O4 catalysts and highlight the important role of surface oxygen vacancies on Co3O4.
基金Financial support for this work provided by the National Natural Science Foundation of China (No.50674088) is deeply appreciated
文摘Using Fourier Transform Infrared (FTIR) combined with an adiabatic oxidation test, temperature-programmed oxidation and gas analysis, we studied the changes of active functional groups during low-temperature oxidation of lignite, gas coal, fat coal and anthracite. During slow low-temperature heat accumulation, aliphatic hydrocarbons, such as methyl and methylene, are attacked by oxygen atoms absorbed by pores on coal surfaces, generating unstable solid intermediate carbon-oxygen complexes, which then decompose into gaseous products (CO, CO2) and stable solid complexes. At the accelerated oxidation stage, the stable complexes begin to decompose in large amounts and provided new active sites for further oxidation, while the aliphatic structures gained energy and fell from the benzene rings to produce CxHy and H2.
文摘Different from the classical configuration CuO/CeO2 catalyst,the inverse configuration CeO2 /CuO catalyst (atomic ratio of Ce/Cu=10/100) was prepared by impregnation method.Five calcination temperatures were selected to investigate the interaction between CeO2 and CuO support.It is found that as calcination temperature increased from 500 to 900 C,sintering of CeO2 particles on the support occurred together with the diffusion of a portion of Ce 4+ ions into CuO crystals,forming solid solution.Formation of interface complex Ce-O-Cu was suggested by TPR measurements.The catalyst calcined at 700 C gives the highest activity for preferential oxidation of CO in excess H2 stream.
文摘Influence of three different preparation methods, i.e. impregnation, coprecipitation, and inverse coprecipitation, on the preferential oxidation of CO in excess hydrogen (PROX) over CuO-CeO2 catalysts has been investigated and CuO-CeO2 catalysts are characterized using BET, XPS, XRD, UV Raman, and TPR techniques. The results show that the catalysts prepared by coprecipitation have smaller particle sizes, well-dispersed CuOx species, more oxygen vacancies, and are more active in the PROX than those prepared by the other methods. However. the inverse coprecipitation depresses the catalytic performance of CuO-CeO2 catalysts and causes the growth of CuO-CeO2 because of different pH value in the precipitation process.
文摘Electro-oxidation of Ce ( Ⅲ ) to Ce ( Ⅳ ) in parallel plate flow type electrolyzer divided with cation exchange membrane was carried out in nitric acid media at carbon felt anode under galvanostatic conditions. Carbon felt was used as an anode for its high specific surface area and high oxygen evolution overpotential. Pt coated Ti plates were used as cathode and anode current feeder. The oxidation of 1 mol· L^-1 Ce( Ⅲ ) solution in 2 mol· L^- 1 HNO3 was proceeding with a high current efficiency (92%) until about 80% of Ce( Ⅲ ) was oxidized. Then, oxygen evolution, accompanied by terminal voltage jump, took place, lowering current efficiency. Ce( Ⅲ ) was oxidized up to 90% with current efficiency of 62%. In this mode, strong carbon felt anode oxidation was observed. The wear out of carbon felt was 46% in six consequent runs (6 h of operation). After each run, carbon felt surface had to be renewed with slightly alkaline solution to remove carbon oxidation products and ensure regular operational conditions. When anode surface was blocked, oxygen evolution took place from the beginning of electrolysis due to higher actual current density. The wear out of carbon felt anode could be minimized by means of oxygen evolution prevention. In the case when electrolysis had been stopped before oxygen evolution started (at Ce( Ⅳ ) conversion of about 80% ), the wear out of anode was less than 2% during 6 consequent runs (4 h of operation).
基金the National Natural Science Foundation of China(20576023)the Guangdong Province Natural Science Foundation (06025660)
文摘The Ru/Al2O3 catalysts modified with metal oxide (K20 and La2O3) were prepared v/a incipient wetness impregnation method from RuCl3.nH2O mixed with nitrate loading on Al2O3 support. The activity of catalysts was evaluated under simulative conditions for the preferential oxidation of CO (CO-PROX) from the hydrogen-rich gas streams produced by reforming gas, and the performances of catalysts were investigated by XRD and TPR. The results showed that the activity temperature of the modified catalysts Ru-K20/Al2O3 and Ru-La2O3/Al2O3 were lowered approximately 30℃ compared with pure Ru/Al2O3, and the activity temperature range was widened. The conversion of CO on Ru-K20/Al2O3 and Ru-La2O3/Al2O3 was above 99% at 140-160℃, suitable to remove CO in a hydrogen-rich gas and the selectivity of Ru-La2O3/Al2O3 was higher than that of Ru-K2O/Al2O3in the active temperature range. Slight methanation reaction was detected at 220℃ and above.
基金support from the National Natural Science Foundation of China (No.51074159)The Graduate Scientific Research Innovation Programme of Jiangsu Province Ordinary University (No. CXZZ12_0957)
文摘Fourier transform infrared spectroscopy(FTIR) and constant heating rate experiments were performed to study the low temperature oxidation of coal treated by an ionic liquid,1-allyl-3-methylimidazolium chloride.The inerting effect of the ionic liquid toward the low temperature oxidation process is discussed.The results show that:(1) The hydroxyl content associated with hydrogen bonds,the aliphatic methyl content,the methylene group content,and the ether oxygen bond content are reduced in the treated coal.At the same time the content of aromatic C@C bonds is constant but these chemical bonds weaken and some substituted aromatic hydrocarbon content increases while other types decrease.This demonstrates that(AMIm)Cl dissolves and destroys the coal surface microstructure;(2) The oxygen consumption of the treated coal is less than what is seen in raw coal.The CO,CO 2,C 2 H 4,and C 2 H 6 content from the treated coal is reduced compared to the untreated coal;(3) The apparent activation energy for the oxidizing reaction is different in the treated and raw coals.Micro-structural changes and macroscopic gas production allow us to conclude that(AMIm)Cl can effectively inhibit low temperature oxidation of coal.
基金Funded by the National Natural Science Foundation of China(No.51134020)the Shenhua Group Corporation Limited(No.U1361213)+2 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Natural Science Foundation of Jiangsu(No.BK20141132)the Fundamental Research Funds for the Central Universities(No.2014QNB01)
文摘Simultaneous thermal analysis was used to study the influence of Vitamin C as possible chemical additive inhibiting coal oxidation process at low temperature. Some oxidation characteristics of Vitamin C affecting the coal oxidation were investigated at different heating rates. The TG-DSC data show that the impact of Vitamin C on coal oxidation process can be directly evaluated using ignition temperature and critical temperature. Comparison with the effect of water on coal oxidation shows that Vitamin C is more efficient than water. However, the blank experiment conducted with inert a-Al2O3 also suggests that Vitamin C can decompose at about 200 ℃, which limits the usage of Vitamin C on inhibiting coal oxidation.
文摘Non-isothermal oxidation of brown coal with 5 wt% of Cu(NO3)2, 5 wt% of Ce(NO3)3 and {2.5 wt% Cu(NO3)2 + 2.5 wt% Ce(NO3)3} additives was studied. The introduction of additives was carried out by an incipient wet impregnation method to ensure uniform distribution of cerium and copper nitrates within the structure of coal powdery samples (according to SEM and EDX mapping). The samples reactivity was studied in an isothermal oxidation regime at 200 °C (1 h) and by DSC/TGA at 2.5 °C/min heating rate. The additives implementation was found to reduce significantly the oxidation onset temperature (△Ti = 20-55 °C), the samples oxidation delay time (△ti= 2-22 min) and overall duration of the oxidation process (△tc = 8-16 min). The additives efficiency could be graded in accordance with the activation on the coal oxidation in the following row: Cu(NO3)2 >{Cu(NO3)2 + Ce(NO3)3}> Ce(NO3)3. According to the mass spectroscopy, the obtained row of activation correlates well with the initial temperature of the studied nitrate's decomposition (from 190 to 223 °C). A presence of nitrates was found to change significantly the trend of heat release taking place during the oxidation of coal samples (according to DSC/TGA data). The influence of coal morphology and volatiles concern in initial sample on the parameters of the oxidation process was studied as well. Activation energy (Ea) of the coal oxidation was calculated using Coats-Redfern method. Maximum decrease in Ea from 69 to 58 kJ/mol was observed for the samples with Cu(NO3)2. Graphical abstract.
基金supported by the Heavy Oil National Key Laboratory (No.2008-03)the Ministry of Science and Technology of China (No.2004 CB719504)the Starting Foundation of Hunan University
文摘CuO-CeO2 catalyst prepared with co-precipitation showed high catalytic performance for the preferential oxidation of CO in excess hydrogen(PROX).Influence of pH values in the preparation of CuO-CeO2 on its catalytic performance was investigated in this work.The CuO-CeO2 catalyst prepared at pH = 13.03 had the smallest particle size(5.4 nm),the largest surface areas(138m 2/g) and the highest activity with CO conversion of 99.6% at 130 ℃.The CuO-CeO2 catalyst was characterized using BET,XRD and TPR techniques.The results showed that when the pH value of the mixed solution containing Cu and Ce species was properly adjusted,both the adsorption layers and diffusion layers of the formed colloidal particles in hydroxide precursor of CuO-CeO2 were modified,resulting in the better catalytic performance for PROX on the final CuO-CeO2 catalyst
基金supported by the Ministry of Science and Technology of China (No.2004 CB 719504)
文摘High performance CuO-CeO2 catalysts for selective oxidation of CO in excess hydrogen were prepared by a hydrothermal method under different preparation conditions and evaluated for catalytic activities and selectivities. By changing the ^nCTAB/^nCe ratio and hydrothermal aging time, the catalytic activity of the CuO-CeO2 catalysts increased and the operating temperature window, in which the CO conversion was higher than 99%, was widened. XRD results showed no peaks of CuOx species and Cu-Ce-O solid solution were observed. On the other hand, Cu+ species in the CuO-CeO2 catalysts, which was associated with a strong interaction between copper oxide clusters and cerium oxide and could be favorable for improving the selective oxidation performance of CO in excess H2, were detected by H2-TPR and XPS techniques.
基金The work was supported by the National Basic Research Program of China (973 Program, No. 2004CB719504)
文摘The CuO-CeO2 catalyst prepared by chelating method has a superior catalytic performance for the preferential oxidation of CO in rich hydrogen, compared with the CuO-CeO2 catalyst prepared by coprecipitation method. The CO conversions over these catalysts, at 120 ℃ and 120000 ml/(g-h) in the absence of CO2 and H2O, are 99.6% and 88.6%, respectively, and the selectivity of O2 over these catalysts is very close (i.e. 51.3% and 55.8%, respectively). The influence of certain factors such as hydrogen concentration, carbon monoxide concentration, H2O, O2/CO ratios, and space velocity on the catalytic performance of CuO-CeO2 catalyst prepared by chelating method is also studied. The results show that the addition of hydrogen and H2O has a negative effect on the catalytic performance of CuO-CeO2 catalyst, however, the variation of space velocity and the O2/CO ratio causes a comparatively slight influence.
基金Project supported by the National Natural Science Foundation of China (20476079)
文摘A very active catalyst of CuO/CeO_2 was made by adsorption-impregnation method for preferential oxidation of CO in H_2. The CO conversion is close to 100% and selectivity to CO oxidation is 96% over this catalyst at a low reaction temperature of 95 ℃ and a space velocity of 40000 cm^3·g^(-1)·h^(-1) in the reaction mixture of 1%CO, 1%O_2, and 50%H_2 balanced with N_2. The effect of preparation conditions on catalytic performances was investigated. The catalytic performance of the CuO/CeO_2 catalysts was compared with that of other CO preferential oxidation catalysts reported in literature.
基金Supported by the Science and Technology Development Project of Shandong Province,China(No.2007GG3WZ03018)
文摘A series of mesoporous Cu-Mn-Al2O3(CMA) materials was synthesized at moderate temperature and their structures were characterized by XRD, N2 physical adsorption and TPR techniques. It was found that using metal complex ion[Cu(NH3) 4^2+-Mn(NH3)6^2+] as raw materials is easier to form good-structure mesoporous Cu-Mn-Al2O3 materials than using its nitrate salt [Cu(NO3)2-Mn(NO3)2]. The TPR tests results indicate that CuO and MnOx were homogeneously dispersed in the mesoporous materials. Their catalytic application to preferential catalytic oxidation of CO in a hydrogen-rich stream was studied. The activity varies in the order of CMA(1:1, molar ratio)〉 CMA(1:2)〉CMA(2:1)〉CMA(CP)〉CMA(1:0)≈CMA(0:1). The CMA(1:0) and CMA(0:1) have lower activity compared to other samples, implying that there existed coordination effect between Cu-Mn in the samples. The selectivity varied in the order of CMA(0:1)≥CMA(1:2)〉CMA(1:1)〉CMA(2:1)〉CMA(1:0) at higher temperature (≥ 120 ℃), indicating that increasing the Cu content enhanced the conversion of H2. The sample CMA(CP) made by coprecipitation method has a lower CO oxidation activity and selectivity than its counter-parts of mesoporous Cu-Mn-Al2O3 materials[CMA(1:2)], this attributed to the lower surface area of the former and poor interaction of CuO with MnOx.
文摘Electrodeposited Ni matrix/Al microparticles or nanoparticles dispersed composite coatings (termed as EMCCs or ENCCs) are developed from a Ni-based electrolyte bath. The Al microparticles are in a size range of 1 -5 μm and the Al nanoparticles in an average size of 75 nm. The Al content in coatings increases with increase in the particle content in the bath. Particle size effect on the degree of codeposition is not significant. However, codeposition of Al nanoparticles instead of microparticles promotes more homogenous growth of Ni deposits on {111}, {200} and {220} planes. The oxidation at 1 050 ℃ of the as-deposited composite coatings shows that at a comparable Al content, ENCC of Ni-Al exhibits a better oxidation resistance than EMCC of Ni-Al due to the fast formation of an alumina scale during the transient stage of oxidation.