期刊文献+
共找到261篇文章
< 1 2 14 >
每页显示 20 50 100
Precision tuning of highly efficient Pt-based ternary alloys on nitrogen-doped multi-wall carbon nanotubes for methanol oxidation reaction
1
作者 Xingqun Zheng Zhengcheng Wang +3 位作者 Qian Zhou Qingmei Wang Wei He Shun Lu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期242-251,I0006,共11页
The electrochemical methanol oxidation is a crucial reaction in the conversion of renewable energy.To enable the widespread adoption of direct methanol fuel cells(DMFCs),it is essential to create and engineer catalyst... The electrochemical methanol oxidation is a crucial reaction in the conversion of renewable energy.To enable the widespread adoption of direct methanol fuel cells(DMFCs),it is essential to create and engineer catalysts that are both highly effective and robust for conducting the methanol oxidation reaction(MOR).In this work,trimetallic PtCoRu electrocatalysts on nitrogen-doped carbon and multi-wall carbon nanotubes(PtCoRu@NC/MWCNTs)were prepared through a two-pot synthetic strategy.The acceleration of CO oxidation to CO_(2) and the blocking of CO reduction on adjacent Pt active sites were attributed to the crucial role played by cobalt atoms in the as-prepared electrocatalysts.The precise control of Co atoms loading was achieved through precursor stoichiometry.Various physicochemical techniques were employed to analyze the morphology,element composition,and electronic state of the catalyst.Electrochemical investigations and theoretical calculations confirmed that the Pt_(1)Co_(3)Ru_(1)@NC/MWCNTs exhibit excellent electrocatalytic performance and durability for the process of MOR.The enhanced MOR activity can be attributed to the synergistic effect between the multiple elements resulting from precisely controlled Co loading content on surface of the electrocatalyst,which facilitates efficient charge transfer.This interaction between the multiple components also modifies the electronic structures of active sites,thereby promoting the conversion of intermediates and accelerating the MOR process.Thus,achieving precise control over Co loading in PtCoRu@NC/MWCNTs would enable the development of high-performance catalysts for DMFCs. 展开更多
关键词 Ternary alloys ELECTROCATALYSTS Methanol oxidation reaction Electron transfer Theoretical calculations
下载PDF
Revealing interfacial charge redistribution of homologous Ru-RuS_(2) heterostructure toward robust hydrogen oxidation reaction
2
作者 Yi Liu Lianrui Cheng +5 位作者 Shuqing Zhou Yuting Yang Chenggong Niu Tayirjan Taylor Isimjan Bao Wang Xiulin Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期332-339,共8页
Precisely tailoring the surface electronic structures of electrocatalysts for optimal hydrogen binding energy and hydroxide binding energy is vital to improve the sluggish kinetics of hydrogen oxidation reac-tion(HOR)... Precisely tailoring the surface electronic structures of electrocatalysts for optimal hydrogen binding energy and hydroxide binding energy is vital to improve the sluggish kinetics of hydrogen oxidation reac-tion(HOR).Herein,we employ a partial desulfurization strategy to construct a homologous Ru-RuS_(2) heterostructure anchored on hollow mesoporous carbon nanospheres(Ru-RuS_(2)@C).The disparate work functions of the heterostructure contribute to the spontaneous formation of a unique built-in electric field,accelerating charge transfer and boosting conductivity of electrocatalyst.Consequently,Ru-RuS_(2)@C exhibits robust HOR electrocatalytic activity,achieving an exchange current density and mass activity as high as 3.56 mA cm^(-2) and 2.13 mAμg_(Ru)^(-1),respectively.exceeding those of state-of-the-art Pt/C and most contemporary Ru-based HOR electrocatalysts.Surprisingly,Ru-RuS_(2)@C can tolerate 1000 ppm of cO that lacks in Pt/C.Comprehensive analysis reveals that the directional electron transfer across Ru-RuS_(2) heterointerface induces local charge redistribution in interfacial region,which optimizes and balances the adsorption energies of H and OH species,as well as lowers the energy barrier for water formation,thereby promoting theHoR performance. 展开更多
关键词 HETEROSTRUCTURE Hollow spherical structure Hydrogen oxidation reaction Charge redistribution Density functional calculation
下载PDF
Boosted Electrocatalytic Glucose Oxidation Reaction on Noble-Metal-Free MoO_(3)-Decorated Carbon Nanotubes
3
作者 Yu-Long Men Ning Dou +3 位作者 Yiyi Zhao Yan Huang Lei Zhang Peng Liu 《Transactions of Tianjin University》 EI CAS 2024年第1期63-73,共11页
Electrocatalytic glucose oxidation reaction(GOR)has attracted much attention owing to its crucial role in biofuel cell fabrication.Herein,we load MoO_(3)nanoparticles on carbon nanotubes(CNTs)and use a discharge proce... Electrocatalytic glucose oxidation reaction(GOR)has attracted much attention owing to its crucial role in biofuel cell fabrication.Herein,we load MoO_(3)nanoparticles on carbon nanotubes(CNTs)and use a discharge process to prepare a noblemetal-free MC-60 catalyst containing MoO_(3),Mo_(2)C,and a Mo_(2)C–MoO_(3)interface.In the GOR,MC-60 shows activity as high as 745μA/(mmol/L cm^(2)),considerably higher than those of the Pt/CNT(270μA/(mmol/L cm^(2)))and Au/CNT catalysts(110μA/(mmol/L cm^(2))).In the GOR,the response minimum on MC-60 is as low as 8μmol/L,with a steady-state response time of only 3 s.Moreover,MC-60 has superior stability and anti-interference ability to impurities in the GOR.The better performance of MC-60 in the GOR is attributed to the abundant Mo sites bonding to C and O atoms at the MoO_(3)–Mo_(2)C interface.These Mo sites create active sites for promoting glucose adsorption and oxidation,enhancing MC-60 performance in the GOR.Thus,these results help to fabricate more effi cient noble-metal-free catalysts for the fabrication of glucose-based biofuel cells. 展开更多
关键词 Interface eff ect ELECTROCATALYSIS Molybdenum oxide GLUCOSE oxidation reaction
下载PDF
RuO_(2)-PdO nanowire networks with rich interfaces and defects supported on carbon toward the efficient alkaline hydrogen oxidation reaction
4
作者 Yuanyuan Cong Fanchao Meng +5 位作者 Haibin Wang Di Dou Qiuping Zhao Chunlei Li Ningshuang Zhang Junying Tian 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第8期255-263,I0008,共10页
Interfacial engineering is a promising approach for enhancing electrochemical performance,but rich and efficient interfacial active sites remain a challenge in fabrication.Herein,RuO_(2)-PdO heterostructure nanowire n... Interfacial engineering is a promising approach for enhancing electrochemical performance,but rich and efficient interfacial active sites remain a challenge in fabrication.Herein,RuO_(2)-PdO heterostructure nanowire networks(NWs) with rich interfaces and defects supported on carbon(RuO_(2)-PdO NWs/C) for alkaline hydrogen oxidation reaction(HOR) was formed by a seed induction-oriented attachment-thermal treatment method for the first time.As expected,the RuO_(2)-PdO NWs/C(72.8% Ru atomic content in metal) exhibits an excellent activity in alkaline HOR with a mass specific exchange current density(jo,m) of 1061 A gRuPd-1,which is 3.1 times of commercial Pt/C and better than most of the reported nonPt noble metal HOR electrocatalysts.Even at the high potential(~0.5 V vs.RHE) or the presence of CO(5 vol%),the RuO_(2)-PdO NWs/C still effectively catalyzes the alkaline HOR.Structure/electrochemical analysis and theoretical calculations reveal that the interfaces between RuO_(2) and PdO act as the active sites.The electronic interactions between the two species and the rich defects for the interfacial active sites weaken the adsorption of Had,also strengthen the adsorption of OHad,and accelerate the alkaline HOR process.Moreover,OHadon RuO_(2) can spillover to the interfaces,keeping the RuO_(2)-PdO NWs/C with the stable current density at higher potential and high resistance to CO poisoning. 展开更多
关键词 Hydrogen oxidation reaction HETEROSTRUCTURE Nanowire networks DEFECTS Interfacial active sites
下载PDF
Efficient solar fuel production enabled by an iodide oxidation reaction on atomic layer deposited MoS_(2)
5
作者 Young Sun Park Gyumin Jang +12 位作者 Inkyu Sohn Hyungsoo Lee Jeiwan Tan Juwon Yun Sunihl Ma Jeongyoub Lee Chan Uk Lee Subin Moon Hayoung Im Seung-Min Chung Seungho Yu Hyungjun Kim Jooho Moon 《Carbon Energy》 SCIE EI CAS CSCD 2023年第12期200-214,共15页
Oxygen evolution reaction(OER)as a half-anodic reaction of water splitting hinders the overall reaction efficiency owing to its thermodynamic and kinetic limitations.Iodide oxidation reaction(IOR)with low thermodynami... Oxygen evolution reaction(OER)as a half-anodic reaction of water splitting hinders the overall reaction efficiency owing to its thermodynamic and kinetic limitations.Iodide oxidation reaction(IOR)with low thermodynamic barrier and rapid reaction kinetics is a promising alternative to the OER.Herein,we present a molybdenum disulfide(MoS_(2))electrocatalyst for a high-efficiency and remarkably durable anode enabling IOR.MoS_(2)nanosheets deposited on a porous carbon paper via atomic layer deposition show an IOR current density of 10 mA cm^(–2)at an anodic potential of 0.63 V with respect to the reversible hydrogen electrode owing to the porous substrate as well as the intrinsic iodide oxidation capability of MoS_(2)as confirmed by theoretical calculations.The lower positive potential applied to the MoS_(2)-based heterostructure during IOR electrocatalysis prevents deterioration of the active sites on MoS_(2),resulting in exceptional durability of 200 h.Subsequently,we fabricate a two-electrode system comprising a MoS_(2)anode for IOR combined with a commercial Pt@C catalyst cathode for hydrogen evolution reaction.Moreover,the photovoltaic–electrochemical hydrogen production device comprising this electrolyzer and a single perovskite photovoltaic cell shows a record-high current density of 21 mA cm^(–2)at 1 sun under unbiased conditions. 展开更多
关键词 iodide oxidation reaction molybdenum sulfide photovoltaic-electrochemical hydrogen production solar hydrogen
下载PDF
Greatly Enhanced Methanol Oxidation Reaction of CoPt Truncated Octahedral Nanoparticles by External Magnetic Fields
6
作者 Mengyuan Zhu Yi Wang +8 位作者 Yanfei Wu Jialong Liu Jingyan Zhang He Huang Xinqi Zheng Jianxin Shen Ruijie Zhao Wenda Zhou Shouguo Wang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第5期201-210,共10页
Tunable behavior in electrocatalysis by external multifields,such as magnetic field,thermal field,and electric field,is the most promising strategy to expand the theory,design,and synthesis of state-of-the-art catalys... Tunable behavior in electrocatalysis by external multifields,such as magnetic field,thermal field,and electric field,is the most promising strategy to expand the theory,design,and synthesis of state-of-the-art catalysts and the cell in the near future.Here,a systematic investigation for the effect of external magnetic field and thermal field on methanol oxidation reactions(MOR)in magnetic nanoparticles is reported.For Co_(42)Pt_(58)truncated octahedral nanoparticles(TONPs),the catalytic performance in MOR is greatly increased to the maximum of 14.1%by applying a magnetic field up to 3000 Oe,and it shows a monotonical increase with increasing working temperature.The magnetic enhanced effect is closely related to the Co content of Co_(x)Pt_(100-x)TONPs.Furthermore,the enhancement effect under a magnetic field is more obvious for Co_(42)Pt_(58)TONPs annealed at 650℃.First-principle calculation points out that the magnetic fields can facilitate the dehydrogenation of both methanol and water by suppression of entropy of the electron spin and lowering of the activation barrier,where OH_(ad)intermediates on Co sites play a more important role.The application of magnetic fields together with thermal fields in MOR provides a new prospect to manipulate the performance of direct methanol fuel cells,which will accelerate their potential applications. 展开更多
关键词 external magnetic fields first-principle calculation methanol oxidation reaction Pt-based magnetic nanomaterials
下载PDF
Theoretical investigations on CO oxidation reaction catalyzed by gold nanoparticles 被引量:2
7
作者 孙科举 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第10期1608-1618,共11页
It is crucial to understand the mechanism of low temperature CO oxidation reaction catalyzed by gold nanoparticles so as to find out the origin of the high catalytic reactivity and extend the indus‐trialization appli... It is crucial to understand the mechanism of low temperature CO oxidation reaction catalyzed by gold nanoparticles so as to find out the origin of the high catalytic reactivity and extend the indus‐trialization applications of nano gold catalysts. In this work, some theoretical works on CO adsorp‐tion, O2 adsorption, atomic oxygen adsorption, formation of surface gold oxide films, reaction mechanisms of CO oxidation involving O2 reaction with CO and O2 dissociation before reacting with CO on gold surfaces and Au/metal oxide were summarized, and the influences of coordination number, charge transfer and relativity of gold on CO oxidation reaction were briefly reviewed. It was found that CO reaction mechanism depended on the systems with or without oxide and the strong relativistic effects might play an important role in CO oxidation reaction on gold catalysts. In particular, the relativistic effects are related to the unique behaviors of CO adsorption, O adsorption, O2 activation on gold surfaces, effects of coordination number and the wide gap between the chem‐ical inertness of bulk gold and high catalytic activity of nano gold. The present work helps us to understand the CO oxidation reaction mechanism on gold catalysts and the influence of relativistic effects on gold catalysis. 展开更多
关键词 Carbon monoxide oxidation reaction Gold nanoparticle reaction mechanism Theoretical calculation Relativistic effect
下载PDF
Hierarchically skeletal multi-layered Pt-Ni nanocrystals for highly efficient oxygen reduction and methanol oxidation reactions 被引量:6
8
作者 Shibo Li Zhi Qun Tian +5 位作者 Yang Liu Zheng Jang Syed Waqar Hasan Xingfa Chen Panagiotis Tsiakaras Pei Kang Shen 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第4期648-657,共10页
Pt based materials are the most efficient electrocatalysts for the oxygen reduction reaction(ORR)and methanol oxidation reaction(MOR)in fuel cells.Maximizing the utilization of Pt based materials by modulating their m... Pt based materials are the most efficient electrocatalysts for the oxygen reduction reaction(ORR)and methanol oxidation reaction(MOR)in fuel cells.Maximizing the utilization of Pt based materials by modulating their morphologies to expose more active sites is a fundamental objective for the practical application of fuel cells.Herein,we report a new class of hierarchically skeletal Pt-Ni nanocrystals(HSNs)with a multi-layered structure,prepared by an inorganic acid-induced solvothermal method.The addition of H_(2)SO_(4)to the synthetic protocol provides a critical trigger for the successful growth of Pt-Ni nanocrystals with the desired structure.The Pt-Ni HSNs synthesized by this method exhibit enhanced mass activity of 1.25 A mgpt−1 at 0.9 V(versus the reversible hydrogen electrode)towards ORR in 0.1-M HClO_(4),which is superior to that of Pt-Ni multi-branched nanocrystals obtained by the same method in the absence of inorganic acid;it is additionally 8.9-fold higher than that of the commercial Pt/C catalyst.Meanwhile,it displays enhanced stability,with only 21.6%mass activity loss after 10,000 cycles(0.6–1.0 V)for ORR.Furthermore,the Pt-Ni HSNs show enhanced activity and anti-toxic ability in CO for MOR.The superb activity of the Pt-Ni HSNs for ORR and MOR is fully attributed to an extensively exposed electrochemical surface area and high intrinsic activity,induced by strain effects,provided by the unique hierarchically skeletal alloy structure.The novel open and hierarchical structure of Pt-Ni alloy provides a promising approach for significant improvements of the activity of Pt based alloy electrocatalysts. 展开更多
关键词 Hierarchically skeletal Pt-Ni NANOCRYSTALS SELF-ASSEMBLY Solvent thermal method Oxygen reduction reaction Methanol oxidation reaction Fuel cells ACTIVITY
下载PDF
Rational design ternary platinum based electrocatalysts for effective methanol oxidation reaction 被引量:6
9
作者 Hao Tian Daoxiong Wu +9 位作者 Jing Li Junming Luo Chunman Jia Zhongxin Liu Wei Huang Qi Chen Chong Michael Shim Peilin Deng Yijun Shen Xinlong Tian 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第7期230-235,I0007,共7页
Exploring effective, durable, and affordable electrocatalysts of methanol oxidation reaction(MOR) is of vital significance for the industrial application of direct methanol fuel cells. Herein, an efficient, general,an... Exploring effective, durable, and affordable electrocatalysts of methanol oxidation reaction(MOR) is of vital significance for the industrial application of direct methanol fuel cells. Herein, an efficient, general,and expandable method is developed to synthesis two-dimensional(2D) ternary Pt Bi M nanoplates(NPLs), in which various M(Co, Ni, Cu, Zn, Sn) is severed as the third component to the binary Pt Bi system. The MOR performance of Pt Bi M NPLs is entirely investigated, demonstrating that both the MOR activity and durability is enhanced with the introduction of the additional composition. Pt3Bi3Zn NPLs shows much higher MOR activity and stability than that of the Pt Bi counterparts, not to mention the current advanced Pt Ru/C and Pt/C catalysts. The prominent performances are attributed to the modulated electronic structure of the surface Pt in Pt Bi NPLs by the addition of Zn, resulting in a weakened affination between Pt and the adsorbed poisoning species(mainly CO) compared with Pt Bi NPLs, verified by density functional theory(DFT) calculations. In addition, the absorbed OH can be generated on the surface of Zn atom due to its favorable water activation properties, thus the CO removal on the adjacent Pt atoms is accelerated, further leading to a high activity and anti-poisoning performance of the resulting Pt_(3)Bi_(3)Zn catalyst. This work provides new insights and robust strategy for highly efficient MOR electrocatalyst with extraordinary anti-poisoning performance and stability. 展开更多
关键词 Fuel cells Ternary nanoplates DURABILITY Methanol oxidation reaction Anti-poisoning
下载PDF
Recent advances in alkaline hydrogen oxidation reaction 被引量:3
10
作者 Lixin Su Dan Gong +2 位作者 Yiming Jin Dean Wu Wei Luo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第3期107-122,I0004,共17页
The development of highly efficient electrocatalysts toward hydrogen oxidation reaction(HOR)under alkaline media is essential for the commercialization of alkaline exchange membrane fuel cells(AEMFCs).However,the HOR ... The development of highly efficient electrocatalysts toward hydrogen oxidation reaction(HOR)under alkaline media is essential for the commercialization of alkaline exchange membrane fuel cells(AEMFCs).However,the HOR kinetics in alkaline is two to three orders of magnitude slower than that in acid.More critically,fundamental understanding of the sluggish kinetics derived from the p H effect is still debatable.In this review,the recent development of understanding HOR mechanism and rational design of advanced HOR electrocatalysts are summarized.First,recent advances in the theories focusing on fundamental understandings of HOR under alkaline electrolyte are comprehensively discussed.Then,from the aspect of intermediates binding energy,optimizing hydrogen binding energy(HBE)and increasing hydroxyl binding energy(OHBE),the strategies for designing efficient alkaline HOR catalysts are summarized.At last,perspectives for the future research on alkaline HOR are pointed out. 展开更多
关键词 Hydrogen oxidation reaction Hydrogen evolution reaction Alkaline electrolyte AEMFC Binding energy
下载PDF
Nitrogen vacancies enriched Ce-doped Ni_(3)N hierarchical nanosheets triggering highly-efficient urea oxidation reaction in urea-assisted energy-saving electrolysis 被引量:3
11
作者 Meng Li Xiaodong Wu +6 位作者 Kun Liu Yifan Zhang Xuechun Jiang Dongmei Sun Yawen Tang Kai Huang Gengtao Fu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第6期506-515,I0014,共11页
Urea oxidation reaction (UOR),which has favorable thermodynamic energy barriers compared with oxygen evolution reaction (OER),can provide more cost-effective electrons for the renewable energy systems,but is trapped b... Urea oxidation reaction (UOR),which has favorable thermodynamic energy barriers compared with oxygen evolution reaction (OER),can provide more cost-effective electrons for the renewable energy systems,but is trapped by its sluggish UOR kinetics and intricate reaction intermediates formation/desorption process.Herein,we report a novel and effective electrocatalyst consisting of carbon cloth supported nitrogen vacancies-enriched Ce-doped Ni_(3)N hierarchical nanosheets (Ce-Ni_(3)N @CC) to optimize the flat-footed UOR kinetics,especially the stiff rate-determine CO_(2)desorption step of UOR.Upon the introduction of valance state variable Ce,the resultant nitrogen vacancies enriched Ce-Ni_(3)N @CC exhibits an enhanced UOR performance where the operation voltage requires only 1.31 V to deliver the current density of 10 mA cm^(-2),which is superior to that of Ni_(3)N @CC catalyst (1.36 V) and other counterparts.Density functional theory (DFT) results demonstrate that the incorporation of Ce in Ni_(3)N lowers the formation energy of nitrogen vacancies,resulting in rich nitrogen vacancies in Ce-Ni_(3)N @CC.Moreover,the nitrogen vacancies together with Ce doping optimize the local charge distribution around Ni sites,and balance the adsorption energy of CO_(2)in the rate-determining step (RDS),as well as affect the initial adsorption structure of urea,leading to the superior UOR catalytic performance of Ce-Ni_(3)N @CC.When integrating the Ce-Ni_(3)N catalyst in UOR//HER and UOR//CO_(2)R flow electrolyzer,both of them perform well with low operation voltage and robust long-term stability,proofing that the thermodynamically favorable UOR can act as a suitable substitute anodic reaction compared with that of OER.Our findings here not only provide a novel UOR catalyst but also offer a promising design strategy for the future development of energy-related devices. 展开更多
关键词 Rare earth cerium Nickel nitride Nitrogen vacancies Charge redistribution Urea oxidation reaction
下载PDF
Surface elemental distribution effect of Pt-Pb hexagonal nanoplates for electrocatalytic methanol oxidation reaction 被引量:2
12
作者 Hee Jin Kim Yong-Deok Ahn +4 位作者 Jeonghyeon Kim Kyoung-Su Kim Yeon Uk Jeong Jong Wook Hong Sang-Il Choi 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第5期813-819,共7页
Bimetallic Pt-based catalysts have been extensively investigated to enhance the performance of direct methanol fuel cells(DMFCs) because CO, a by-product, reduces the activity of the pure Pt catalysts. Herein, we synt... Bimetallic Pt-based catalysts have been extensively investigated to enhance the performance of direct methanol fuel cells(DMFCs) because CO, a by-product, reduces the activity of the pure Pt catalysts. Herein, we synthesized Pt-Pb hexagonal nanoplates as a model catalyst for the methanol oxidation reaction(MOR) and further controlled the Pt and Pb distributions on the surface of the nanoplates through acetic acid(HAc) treatment. As a result, we obtained Pt-Pb nanoplates and HAc-treated Pt-Pb nanoplates with homogeneous and heterogeneous distributions of the Pt-Pb alloy surfaces, respectively. We showed that the MOR activity and stability of the Pt-Pb nanoplates improved compared to those of the HAc-treated Pt-Pb nanoplates, mainly due to the enhanced CO tolerance and the modified electronic structure of Pt under the influence of the oxophilic Pb. 展开更多
关键词 Platinum Lead NANOPLATE Surface atomic distribution Methanol oxidation reaction
下载PDF
Improved hydrogen oxidation reaction under alkaline conditions by Au–Pt alloy nanoparticles 被引量:2
13
作者 Lijuan Lu Lishan Peng +3 位作者 Li Li Jing Li Xun Huang Zidong Wei 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第1期52-56,I0003,共6页
This work demonstrates the outstanding performance of alloyed Au1 Pt1 nanoparticles on hydrogen oxidation reaction(HOR)in alkaline solution.Due to the weakened hydrogen binding energy caused by uniform incorporation o... This work demonstrates the outstanding performance of alloyed Au1 Pt1 nanoparticles on hydrogen oxidation reaction(HOR)in alkaline solution.Due to the weakened hydrogen binding energy caused by uniform incorporation of Au,the alloyed Au1Pt1/C nanoparticles exhibit superior HOR activity than commercial PtRu/C.On the contrary,the catalytic performance of the phase-segregated Au2Pt1/C and Au1Pt1/C bimetallic nanoparticles in HOR is significantly worse.Moreover,Au1Pt1/C shows a remarkable durability with activity dropping only 4% after 3000 CV cycles,while performance attenuation of commercial PtRu/C is high up to 15% under the same condition.Our results indicate that the alloyed Au1Pt1/C is a promising candidate to substitute commercial PtRu/C for hydrogen oxidation reaction in alkaline electrolyte. 展开更多
关键词 Hydrogen oxidation reaction Pt-Au alloy NANOPARTICLES Alkaline electrolyte
下载PDF
Simple Preparation of Crystal Co_3(BTC)_2·12H_2O and Its Catalytic Activity in CO Oxidation Reaction 被引量:1
14
作者 谭海燕 LIU Cheng +1 位作者 YAN Yunfan 吴金平 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第1期71-75,共5页
Crystalline metal-organic framework cobalt (II) benzenetricarboxylate C%(BTC)2·12H2O (MOF-Co) has been prepared using solvothermal method. The reaction of cobalt (II) nitrate and 1,3,5-benzenetriearboxyl... Crystalline metal-organic framework cobalt (II) benzenetricarboxylate C%(BTC)2·12H2O (MOF-Co) has been prepared using solvothermal method. The reaction of cobalt (II) nitrate and 1,3,5-benzenetriearboxylic (BTC) acid in a mixed solution of N,N-dimethylformarnide (DMF)/C2H5OH/H2O (1:1:1, v/v) at low temperature for short reaction times produced this crystalline compound. Compared with traditional hydrothermal method, a mixed solution method for the synthesis of crystalline metal complex was found to be highly efficient. After water molecules were removed from this metal complex, its exposed nodes served as active sites. When this MOF-Co was employed in the oxidation of CO, it showed good catalytic properties causing 100% conversion of CO to CO2 at low temperature of 160 ℃. 展开更多
关键词 metal-organic framework solvothermal synthesis crystalline compound cobalt catalyst CO oxidation reaction
下载PDF
Hydrogen evolution-assisted one-pot aqueous synthesis of hierarchical trimetallic PdNiRu nanochains for hydrazine oxidation reaction 被引量:1
15
作者 Tao Yuan Aijun Wang +2 位作者 Keming Fang Zhigang Wang Jiuju Feng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第6期1231-1237,共7页
A hydrogen evolution-assisted one-pot aqueous approach was developed for facile synthesis of trimetallic Pd Ni Ru alloy nanochain-like networks(Pd Ni Ru NCNs) by only using KBHas the reductant, without any specific ... A hydrogen evolution-assisted one-pot aqueous approach was developed for facile synthesis of trimetallic Pd Ni Ru alloy nanochain-like networks(Pd Ni Ru NCNs) by only using KBHas the reductant, without any specific additive(e.g. surfactant, polymer, template or seed). The products were mainly investigated by transmission electron microscopy(TEM), X-ray diffraction(XRD) and X-ray photoelectron spectroscopy(XPS). The hierarchical architectures were formed by the oriented assembly growth and the diffusioncontrolled deposition in the presence of many in-situ generated hydrogen bubbles. The architectures had the largest electrochemically active surface area(ECSA) of 84.32 mgPdthan Pd Ni nanoparticles(NPs,65.23 mgPd), Pd Ru NPs(23.12 mgPd), Ni Ru NPs(nearly zero), and commercial Pd black(6.01 mgPd), outperforming the referenced catalysts regarding the catalytic characters for hydrazine oxygen reaction(HOR). The synthetic route provides new insight into the preparation of other trimetallic nanocatalysts in fuel cells. 展开更多
关键词 Trimetallic alloy Nanochain networks Hydrogen evolution-assisted synthesis Diffusion-controlled deposition Hydrazine oxidation reaction
下载PDF
Robust copper nanocrystal/nitrogen-doped carbon monoliths as carbon monoxide-resistant electrodes for methanol oxidation reaction 被引量:1
16
作者 Fei Chen Na Wu +4 位作者 Meixu Zhai Xue Zhang Ruihong Guo Tuoping Hu Mingming Ma 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第7期247-255,共9页
Noble metal-based electrocatalysts present high activities for methanol oxidation reaction(MOR),but are limited by their high cost,low stability and poor resistance to carbon monoxide(CO) poisoning.The development of ... Noble metal-based electrocatalysts present high activities for methanol oxidation reaction(MOR),but are limited by their high cost,low stability and poor resistance to carbon monoxide(CO) poisoning.The development of active and stable non-noble metal electrocatalysts for MOR is desired,but remains a challenge.Herein,we report a simple strategy to make copper nanocrystal/nitrogen-doped carbon(Cu/N-C)monoliths,which can serve as active and robust electrodes for MOR.Copper nanocrystals were electrochemically deposited onto a conductive polyaniline hydrogel and calcined to form Cu/N-C monolith,where the active copper nanocrystals are protected by nitrogen-doped carbon.Owing to their extremely high electrical conductivity(1.25 × 10^(5) S cm^(-1)) and mechanical robustness,these Cu/N-C monoliths can be directly used as electrodes for MOR,without using substrates or additives.The optimal Cu/N-C(FT)@500 monolith shows a high MOR activity of 189 mA cm^(-2) at 0.6 V vs.SCE in alkaline methanol solution,superior to most of reported Cu-based MOR catalysts.Cu/N-C(FT)@500 also presents a better stability than Pt/C catalyst in the long-term MOR test at high current densities.Upon carbon monoxide(CO) poisoning,Cu/N-C(FT)@500 retains 96% of its MOR activity,far exceeding the performance of Pt/C catalyst(61% retention).Owing to its facile synthesis,outstanding activity,high stability and mechanical robustness,Cu/N-C(FT)@500 monolith is promising as a low-cost,efficient and CO-resistant electrocatalyst for MOR. 展开更多
关键词 Copper nanocrystal Methanol oxidation reaction Non-noble metal-based electrocatalysts Poison-resistant electrocatalysts Nitrogen-doped carbon
下载PDF
Two-dimensional bimetallic coordination polymers as bifunctional evolved electrocatalysts for enhanced oxygen evolution reaction and urea oxidation reaction 被引量:1
17
作者 Qiang Li Lele Lu +2 位作者 Jingwei Liu Wei Shi Peng Cheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第12期230-238,I0005,共10页
Two-dimensional coordination polymers(CPs) have aroused tremendous interest as electrocatalysts because the catalytic performance could be fine-tuned by their well-designed coordination layers with highly accessible a... Two-dimensional coordination polymers(CPs) have aroused tremendous interest as electrocatalysts because the catalytic performance could be fine-tuned by their well-designed coordination layers with highly accessible and active metal sites.However,it remains great challenge for CP-based catalysts to be utilized for electrocatalytic oxidation reactions due to their inefficient activities and low catalytic stabilities.Herein,we applied a mixed-metal strategy to fabricate two-dimensional Co_xNi_(1-x)-CPs with dual active sites for electrocatalytic water and urea oxidation.By metal ratio regulation in the twodimensional layer,an optimized Co_(2/3)Ni_(1/3)-CP exhibits a water oxidation performance with an overpotential of 325 mV at a current density of 10 mA cm^(-2) and a Tafel slope of 86 mV dec^(-1) in alkaline solution for oxygen evolution reaction.Importantly,a lower potential than that of commercial RuO_(2) is observed over20 mA cm^(-2).Co_(2/3)Ni_(1/3)-CP also displays a potential of 1.381 V at 10 mA cm^(-2) for urea oxidation reaction and a Tafel slope of 124 mV dec^(-1).This mixed-metal strategy to maximize synergistic effect of different metal centers may ultimately lead to promising electrocatalysts for small molecule oxidation reaction. 展开更多
关键词 Coordination Polymers ELECTROCATALYSIS Oxygen Evolution reaction Urea oxidation reaction
下载PDF
Electrocatalysts development for hydrogen oxidation reaction in alkaline media:From mechanism understanding to materials design
18
作者 Yang Qiu Xiaohong Xie +1 位作者 Wenzhen Li Yuyan Shao 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第12期2094-2104,共11页
Anion exchange membrane(AEM)fuel cells have gained great attention partially due to the advantage of using non-precious metal as catalysts.However,the reaction kinetics of hydrogen oxidation reaction(HOR)is two orders... Anion exchange membrane(AEM)fuel cells have gained great attention partially due to the advantage of using non-precious metal as catalysts.However,the reaction kinetics of hydrogen oxidation reaction(HOR)is two orders of magnitude slower in alkaline systems than in acid.To understand the slower kinetics of HOR in base,two major theories have been proposed,such as(1)pH dependent hydrogen binding energy as a major descriptor for HOR;and(2)bifunctional theory based on the contributions of both hydrogen and hydroxide adsorption for HOR in alkaline electrolyte.Here,we discuss the possible HOR mechanisms in alkaline electrolytes with the corresponding change in their Tafel behavior.Apart from the traditional Tafel-Volmer and Heyrovsky-Volmer HOR mechanisms,the recently proposed hydroxide adsorption step is also discussed to illustrate the difference in HOR mechanisms in acid and base.We further summarize the representative works of alkaline HOR catalyst design(e.g.,precious metals,alloy,intermetallic materials,Ni-based alloys,carbides,nitrides,etc.),and briefly describe their fundamental HOR reaction mechanism to emphasize the difference in elementary reaction steps in alkaline medium.The strategy of strengthening local interaction that facilitates both H2 desorption and Hads+OHads recombination is finally proposed for future HOR catalyst design in alkaline environment. 展开更多
关键词 Hydrogen oxidation reaction Alkaline electrolyte Fuel cell ELECTROCATALYST ELECTROCATALYSIS Hydrogen and hydroxide binding energy
下载PDF
Catalytic activity of V_(2)CO_(2) MXene supported transition metal single atoms for oxygen reduction and hydrogen oxidation reactions:A density functional theory calculation study
19
作者 Zhongjing Deng Xingqun Zheng +3 位作者 Mingming Deng Li Li Li Jing Zidong Wei 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第10期1659-1666,共8页
Two-dimensional(2D)MXene and single-atom(SA)catalysts are two frontier research fields in catalysis.2D materials with unique geometric and electronic structures can modulate the catalytic performance of supported SAs,... Two-dimensional(2D)MXene and single-atom(SA)catalysts are two frontier research fields in catalysis.2D materials with unique geometric and electronic structures can modulate the catalytic performance of supported SAs,which,in turn,affect the intrinsic activity of 2D materials.Density functional theory calculations were used to systematically explore the potential of O-terminated V2C MXene(V_(2)CO_(2))-supported transition metal(TM)SAs,including a series of 3d,4d,and 5d metals,as oxygen reduction reaction(ORR)and hydrogen oxidation reaction(HOR)catalysts.The combination of TM SAs and V_(2)CO_(2)changes their electronic structure and enriches the active sites,and consequently regulates the intermediate adsorption energy and catalytic activity for ORR and HOR.Among the investigated TM-V_(2)CO_(2)models,Sc-,Mn-,Rh-,and PtMCCh showed high ORR activity,while Sc-,Ti-,V-,Cr-,and Mn-V_(2)CO_(2)exhibited high HOR activity.Specifically,Mn-and Sc-V_(2)CO_(2)are expected to serve as highly efficient and cost-effective bifunctional catalysts for fuel cells because of their high catalytic activity and stability.This work provides theoretical guidance for the rational design of efficient ORR and HOR bifunctional catalysts. 展开更多
关键词 Single atoms catalyst MXenes Oxygen reduction reaction Hydrogen oxidation reaction Density functional theory Fuel cells
下载PDF
Characteristics of Oxidation Reaction of Rare-Earth Chlorides in Eutectic Chloride Melt
20
作者 Yung-Zun Cho Hee-Chul Yang +2 位作者 Hee-Chul Eun Eung-Ho Kim In-Tae Kim 《Journal of Rare Earths》 SCIE EI CAS CSCD 2007年第S1期13-16,共4页
Oxidation reaction of rare earth chlorides(Ce/Pr/Nd/EuCl3) in a LiCl-KCl eutectic molten salt was carried out using an oxygen sparging method. Regardless of the sparging time and the molten salt temperature, oxychlori... Oxidation reaction of rare earth chlorides(Ce/Pr/Nd/EuCl3) in a LiCl-KCl eutectic molten salt was carried out using an oxygen sparging method. Regardless of the sparging time and the molten salt temperature, oxychlorides (NdOCl, PrOCl) and oxides(CeO, Eu2O3, PrO2) were formed as a oxidation products(i.e. precipitates) by the reaction with oxygen. The conversion efficiency of the rare earth elements to the precipitates increases with the sparging time and the molten salt temperature. In the conditions of 650 ℃ of a molten salt temperature and 420 min of a sparging time, the values of the conversion efficiency of the used rare earth chlorides were over 99.9%. Information on the hydrodynamics of an oxygen-molten salt two phase flow system is essential since its hydrodynamics strongly affect the oxidation reaction of rare earth elements in an eutectic chloride melts. 展开更多
关键词 oxidation reaction oxygen sparging flow regime conversion efficiency rare earths
下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部