Heterogeneous interfaces produced by interdomain interactions on a nanoscale performs a crucial role in boosting the properties of an electrocatalyst toward oxygen evolution reaction(OER)process.Herein,a series of dua...Heterogeneous interfaces produced by interdomain interactions on a nanoscale performs a crucial role in boosting the properties of an electrocatalyst toward oxygen evolution reaction(OER)process.Herein,a series of dual-phase electrodes with intimately connected heterointerfaces are prepared by in situ decomposing solid solution oxide of Ni_(x)Co_(y)Fe_(100-x-y)O,which grew on Ni foam massively via an ultrafast combustion approach.Particularly,with high-reaction kinetics caused by the reduction treatment at 450℃,the less electronegative Fe and Co are more oxyphilic than Ni,which facilitated their co-exsolution and formation of CoFe_2O_4/NiO oxide with enriched oxygen vacancies.Benefiting from the nanoporous framework,heterojunction structure,and oxygen defects,the self-supporting electrodes present rapid charge/mass transmission and provide abundant active sites for OER.The optimized sample(R-SNCF4.5)shows low overpotentials of 226 and 324 mV at 10 and100 mA·cm^(-2),a small Tafel slope(46.7 mV·dec^(-1)),and excellent stability.The assembled R-SNCF4.5//Pt/C/NF electrolyzer demonstrates continuous electrolysis over 50 h at a current density of 10 mA·cm^(-2),under 1.51 V.Density functional theory(DFT)calculations verify that the strong electronic modulation plays a critical part in the CoFe_2O_4/NiO hybrid by lowering the energy barriers for the ratedetermining steps,and Fe sites are the most active OER sites.展开更多
Titanium based IrO2 +Ta2O5 oxide anodes with different compositions and pyrolysis temperatures were prepared by termodecompoisition method. By using X-ray diffraction (XRD), the structure and texture coefficient of th...Titanium based IrO2 +Ta2O5 oxide anodes with different compositions and pyrolysis temperatures were prepared by termodecompoisition method. By using X-ray diffraction (XRD), the structure and texture coefficient of the coatings, TC(hkl), of IrO2 rutile crystal have been tested. It showed that, the crystallization processes of IrO2 and Ta2O5 in xIrO2 +(100-x) Ta2 O5 (x is in mol%) films affected and confined each other.In the mixed system, IrO2 rutile phase existed as a solid solution with Ta, and attained the maximum solubility when x=70mol%, i.e. for the coating of 70% IrO2 +Ta2O5.For the coatings of low iridium content or at low preparing tem pemture, (110) and (101) pwtered orientations were dominant. However, preferred growth of IrO2 weakened with increasing either iridium content or temperature. Three typical surface morphologies were observed by using scanning electron tnicroscopy(SEM). The crystallite size of the mixed oxide coatings were finest for the the film of 70%IrO2 +30%Ta2O5,and decreased with the pyrolysis tempemture. As the results of the finest crystallite segregating on sudece and the maxitnum solid solubility of Ir and Ta component in deposits, the coatings with the composition of 70%IrO2 +Ta2O5 prepared at 450℃ presented the mdrimutn electrocatalgtic activitg for O2 evolution in 0. 5M H2SO4 solution.UP to 550℃, Ti base suffered to oxidation resulting in decreasing anode conductivity,therefore, coatings performed a low activity.展开更多
Fenton oxidation is generally inhibited in the presence of a high concentration of chloride ions.This study investigated the feasibility of using benzoquinone(BQ) and hydroxylamine hydrochloride(HA) as Fenton enha...Fenton oxidation is generally inhibited in the presence of a high concentration of chloride ions.This study investigated the feasibility of using benzoquinone(BQ) and hydroxylamine hydrochloride(HA) as Fenton enhancers for the removal of glycerin from saline water under ambient temperature by accelerating the ferric system.It was found that organics removal was not obviously affected by chloride ions of low concentration(less than 0.1 mol/L),while the mineralization rate was strongly inhibited in the presence of a large amount of chloride ions.In addition,ferric hydrolysis-precipitation was significantly alleviated in the presence of HA and BQ,and HA was more effective in reducing ferric ions into ferrous ions than HA,while the H_2O_2 decomposition rate was higher in the BQ-Fenton system.Electron spin resonance analysis revealed that OH production was reduced in high salinity conditions,while it was enhanced after the addition of HA and BQ(especially HA).This study provided a possible solution to control and alleviate the inhibitory effect of chloride ions on the Fenton process for organics removal.展开更多
Underpotential deposition(UPD) of Cu on an Au electrode followed by redox replacement reaction(RRR) of CuUPD with a Pt source(H2PtCl6 or K2PtCl4) yielded Au-supported Pt adlayers(for short,Pt(CuUPD-Pt4+)n/Au for H2PtC...Underpotential deposition(UPD) of Cu on an Au electrode followed by redox replacement reaction(RRR) of CuUPD with a Pt source(H2PtCl6 or K2PtCl4) yielded Au-supported Pt adlayers(for short,Pt(CuUPD-Pt4+)n/Au for H2PtCl6,or Pt(CuUPD-Pt2+)n/Au for K2PtCl4,where n denotes the number of UPD-redox replacement cycles).The electrochemical quartz crystal microbalance(EQCM) technique was used for the first time to quantitatively study the fabricated electrodes and estimate their mass-normalized specific electrocatalytic activity(SECA) for methanol oxidation in alkaline solution.In comparison with Pt(CuUPD-Pt2+)n/Au,Pt(CuUPD-Pt4+)n/Au exhibited a higher electrocatalytic activity,and the maximum SECA was obtained to be as high as 35.7 mA ?g?1 at Pt(CuUPD-Pt4+)3/Au.The layer-by-layer architecture of Pt atoms on Au is briefly discussed based on the EQCM-revealed redox replacement efficiency,and the calculated distribution percentages of bare Au sites agree with the experimental results deduced from the charge under the AuOx-reduction peaks.The EQCM is highly recommended as an efficient technique to quantitatively examine various electrode-supported catalyst adlayers,and the highly efficient catalyst adlayers of noble metals are promising in electrocatalysis relevant to biological,energy and environmental sciences and technologies.展开更多
In this work, the influence of trivalent rare-earth dopants(Sm and La) on the structure-activity properties of CeO2 was thoroughly studied for diesel soot oxidation. For this, an optimized 40% of Sm and La was incor...In this work, the influence of trivalent rare-earth dopants(Sm and La) on the structure-activity properties of CeO2 was thoroughly studied for diesel soot oxidation. For this, an optimized 40% of Sm and La was incorporated into the CeO2 using a facile coprecipitation method from ultra-high dilute aqueous solutions. A systematic physicochemical characterization was carried out using X-ray diffraction(XRD), transmission electron microscopy(TEM), Brumauer-Emmett-teller method(BET) surface area, X-ray photoelectron spectroscopy(XPS), Raman, and H2-temperature programmed reduction(TPR) techniques. The soot oxidation efficiency of the catalysts was investigated using a thermogravimetric method. The XRD results suggested the formation of nanocrystalline single phase CeO2-Sm2O3 and CeO2-La2O3 solid solutions. The Sm- and La-doped CeO2 materials exhibited smaller crystallite size and higher BET surface area compared with the pure CeO2. Owing to the difference in the oxidation states of the dopants(Sm3+ and La3+) and the Ce4+, a number of oxygen vacancies were generated in CeO2-Sm2O3 and CeO2-La2O3 samples. The H2-TPR studies evidenced the improved reducible nature of the CeO2-Sm2O3 and CeO2-La2O3 samples compared with the CeO2. It was found that the addition of Sm and La to the CeO2 outstandingly enhanced its catalytic efficiency for the oxidation of diesel soot. The observed 50% soot conversion temperatures for the CeO2-Sm2O3, CeO2-La2O3 and CeO2 were ~790, 843 and 864 K(loose contact), respectively, and similar activity order was also found under the tight contact condition. The high soot oxidation efficacy of the CeO2-Sm2O3 sample was attributed to numerous catalytically favourable properties, like smaller crystallite size, larger surface area, abundant oxygen vacancies, and superior reducible nature.展开更多
To confirm sub-regular solution model valid for predicting the activity of component in binary oxide systems, seven systems in the whole concentration and twelve systems presenting saturation concentration have been s...To confirm sub-regular solution model valid for predicting the activity of component in binary oxide systems, seven systems in the whole concentration and twelve systems presenting saturation concentration have been studied. The total average relative errors of component 1 and 2 are 3.2 % and 4.1% respectively by application of the sub-regular solution model into the systems within the whole concentration. However, the total average relative errors are 16 % and 1088 % in the systems presenting saturation concentration. The results show that sub-regular solu- tion model is not good for predicting the systems presenting saturation concentration, especially for the systems con- taining acidic or neutral oxide. The reason may be that the influence of the two types of oxide on the configuration is greater in binary oxide systems. These oxides can be present in the form of complex anion partly, Si-O, Al-O, Ti-O and so on, for example (SiO4)4-. That is contrary to sub-regular solution model which is supposed that the oxide systems consist of cation and O2-. But compared with regular solution model and quasi-regular solution model, sub- regular solution model is closer to the characteristics of actual solution and the calculated results are superior.展开更多
A novel wet etching method for AlGaN/GaN heterojunction structures is proposed using thermal oxidation f ollowed by wet etching in KOH solution.It is found that an AlGaN/GaN heterostructure after high temperature oxid...A novel wet etching method for AlGaN/GaN heterojunction structures is proposed using thermal oxidation f ollowed by wet etching in KOH solution.It is found that an AlGaN/GaN heterostructure after high temperature oxidation above 700℃could be etched off in a homothermal(70℃) KOH solution while the KOH solution had no etching effects on the region of the AlGaN/GaN heterostructure protected by a SiO_2 layer during the oxidation process.A groove structure with 150 nm step depth on an AlGaN/GaN heterostructure was formed after 8 h thermal oxidation at 900℃followed by 30 min treatment in 70℃KOH solution.As the oxidation time increases,the etching depth approaches saturation and the roughness of the etched surface becomes much better.The physical mechanism of this phenomenon is also discussed.展开更多
A waste heat recovery and denitrification system was developed for improving energy conservation and emissions control especially for control of PM2.5 particles and haze. The system uses enhanced heat and mass transfe...A waste heat recovery and denitrification system was developed for improving energy conservation and emissions control especially for control of PM2.5 particles and haze. The system uses enhanced heat and mass transfer techniques in a packed heat exchange tower with self-rotation and zero-pressure spraying, low temperature NO oxidation by ozone, and neutralization with an alkali solution. Operating data in a test project gave NOx in the exhaust flue gas of less than 30 mg/Nm3 with an ozone addition rate of 8 kg/h and spray water p H of 7.5–8, an average heat recovery of 3 MW, and an average heat supply of 7.2 MW.展开更多
We review our efforts to develop and implement robust computational approaches for exploring phase stability to facilitate the prediction-to-synthesis process of novel functional oxides.These efforts focus on a synerg...We review our efforts to develop and implement robust computational approaches for exploring phase stability to facilitate the prediction-to-synthesis process of novel functional oxides.These efforts focus on a synergy between(i)electronic structure calculations for properties predictions,(ii)phenomenological/empirical methods for examining phase stability as related to both phase segregation and temperature-dependent transitions and(iii)experimental validation through synthesis and characterization.We illustrate this philosophy by examining an inaugural study that seeks to discover novel functional oxides with high piezoelectric responses.Our results show progress towards developing a framework through which solid solutions can be studied to predict materials with enhanced properties that can be synthesized and remain active under device relevant conditions.展开更多
基金financially supported by the National Natural Science Foundation of China(No.52101251)the Natural Science Foundation of Hebei Province(Nos.E2020208069 and B2020208083)。
文摘Heterogeneous interfaces produced by interdomain interactions on a nanoscale performs a crucial role in boosting the properties of an electrocatalyst toward oxygen evolution reaction(OER)process.Herein,a series of dual-phase electrodes with intimately connected heterointerfaces are prepared by in situ decomposing solid solution oxide of Ni_(x)Co_(y)Fe_(100-x-y)O,which grew on Ni foam massively via an ultrafast combustion approach.Particularly,with high-reaction kinetics caused by the reduction treatment at 450℃,the less electronegative Fe and Co are more oxyphilic than Ni,which facilitated their co-exsolution and formation of CoFe_2O_4/NiO oxide with enriched oxygen vacancies.Benefiting from the nanoporous framework,heterojunction structure,and oxygen defects,the self-supporting electrodes present rapid charge/mass transmission and provide abundant active sites for OER.The optimized sample(R-SNCF4.5)shows low overpotentials of 226 and 324 mV at 10 and100 mA·cm^(-2),a small Tafel slope(46.7 mV·dec^(-1)),and excellent stability.The assembled R-SNCF4.5//Pt/C/NF electrolyzer demonstrates continuous electrolysis over 50 h at a current density of 10 mA·cm^(-2),under 1.51 V.Density functional theory(DFT)calculations verify that the strong electronic modulation plays a critical part in the CoFe_2O_4/NiO hybrid by lowering the energy barriers for the ratedetermining steps,and Fe sites are the most active OER sites.
文摘Titanium based IrO2 +Ta2O5 oxide anodes with different compositions and pyrolysis temperatures were prepared by termodecompoisition method. By using X-ray diffraction (XRD), the structure and texture coefficient of the coatings, TC(hkl), of IrO2 rutile crystal have been tested. It showed that, the crystallization processes of IrO2 and Ta2O5 in xIrO2 +(100-x) Ta2 O5 (x is in mol%) films affected and confined each other.In the mixed system, IrO2 rutile phase existed as a solid solution with Ta, and attained the maximum solubility when x=70mol%, i.e. for the coating of 70% IrO2 +Ta2O5.For the coatings of low iridium content or at low preparing tem pemture, (110) and (101) pwtered orientations were dominant. However, preferred growth of IrO2 weakened with increasing either iridium content or temperature. Three typical surface morphologies were observed by using scanning electron tnicroscopy(SEM). The crystallite size of the mixed oxide coatings were finest for the the film of 70%IrO2 +30%Ta2O5,and decreased with the pyrolysis tempemture. As the results of the finest crystallite segregating on sudece and the maxitnum solid solubility of Ir and Ta component in deposits, the coatings with the composition of 70%IrO2 +Ta2O5 prepared at 450℃ presented the mdrimutn electrocatalgtic activitg for O2 evolution in 0. 5M H2SO4 solution.UP to 550℃, Ti base suffered to oxidation resulting in decreasing anode conductivity,therefore, coatings performed a low activity.
基金supported by the National Natural Science Foundation of China(Nos.51025830,41201498 and 51178360)
文摘Fenton oxidation is generally inhibited in the presence of a high concentration of chloride ions.This study investigated the feasibility of using benzoquinone(BQ) and hydroxylamine hydrochloride(HA) as Fenton enhancers for the removal of glycerin from saline water under ambient temperature by accelerating the ferric system.It was found that organics removal was not obviously affected by chloride ions of low concentration(less than 0.1 mol/L),while the mineralization rate was strongly inhibited in the presence of a large amount of chloride ions.In addition,ferric hydrolysis-precipitation was significantly alleviated in the presence of HA and BQ,and HA was more effective in reducing ferric ions into ferrous ions than HA,while the H_2O_2 decomposition rate was higher in the BQ-Fenton system.Electron spin resonance analysis revealed that OH production was reduced in high salinity conditions,while it was enhanced after the addition of HA and BQ(especially HA).This study provided a possible solution to control and alleviate the inhibitory effect of chloride ions on the Fenton process for organics removal.
基金supported by the National Natural Science Foundation of China (20675029 & 90713018)the State Special Scientific Project on Water Treatment (2009ZX07212-001-06)
文摘Underpotential deposition(UPD) of Cu on an Au electrode followed by redox replacement reaction(RRR) of CuUPD with a Pt source(H2PtCl6 or K2PtCl4) yielded Au-supported Pt adlayers(for short,Pt(CuUPD-Pt4+)n/Au for H2PtCl6,or Pt(CuUPD-Pt2+)n/Au for K2PtCl4,where n denotes the number of UPD-redox replacement cycles).The electrochemical quartz crystal microbalance(EQCM) technique was used for the first time to quantitatively study the fabricated electrodes and estimate their mass-normalized specific electrocatalytic activity(SECA) for methanol oxidation in alkaline solution.In comparison with Pt(CuUPD-Pt2+)n/Au,Pt(CuUPD-Pt4+)n/Au exhibited a higher electrocatalytic activity,and the maximum SECA was obtained to be as high as 35.7 mA ?g?1 at Pt(CuUPD-Pt4+)3/Au.The layer-by-layer architecture of Pt atoms on Au is briefly discussed based on the EQCM-revealed redox replacement efficiency,and the calculated distribution percentages of bare Au sites agree with the experimental results deduced from the charge under the AuOx-reduction peaks.The EQCM is highly recommended as an efficient technique to quantitatively examine various electrode-supported catalyst adlayers,and the highly efficient catalyst adlayers of noble metals are promising in electrocatalysis relevant to biological,energy and environmental sciences and technologies.
基金supported by the Department of Science and Technology,New Delhi,under SERB Scheme(SB/S1/PC-106/2012)
文摘In this work, the influence of trivalent rare-earth dopants(Sm and La) on the structure-activity properties of CeO2 was thoroughly studied for diesel soot oxidation. For this, an optimized 40% of Sm and La was incorporated into the CeO2 using a facile coprecipitation method from ultra-high dilute aqueous solutions. A systematic physicochemical characterization was carried out using X-ray diffraction(XRD), transmission electron microscopy(TEM), Brumauer-Emmett-teller method(BET) surface area, X-ray photoelectron spectroscopy(XPS), Raman, and H2-temperature programmed reduction(TPR) techniques. The soot oxidation efficiency of the catalysts was investigated using a thermogravimetric method. The XRD results suggested the formation of nanocrystalline single phase CeO2-Sm2O3 and CeO2-La2O3 solid solutions. The Sm- and La-doped CeO2 materials exhibited smaller crystallite size and higher BET surface area compared with the pure CeO2. Owing to the difference in the oxidation states of the dopants(Sm3+ and La3+) and the Ce4+, a number of oxygen vacancies were generated in CeO2-Sm2O3 and CeO2-La2O3 samples. The H2-TPR studies evidenced the improved reducible nature of the CeO2-Sm2O3 and CeO2-La2O3 samples compared with the CeO2. It was found that the addition of Sm and La to the CeO2 outstandingly enhanced its catalytic efficiency for the oxidation of diesel soot. The observed 50% soot conversion temperatures for the CeO2-Sm2O3, CeO2-La2O3 and CeO2 were ~790, 843 and 864 K(loose contact), respectively, and similar activity order was also found under the tight contact condition. The high soot oxidation efficacy of the CeO2-Sm2O3 sample was attributed to numerous catalytically favourable properties, like smaller crystallite size, larger surface area, abundant oxygen vacancies, and superior reducible nature.
基金Item Sponsored by National Natural Science Foundation of China(50764006,50574045)Yunnan Basic Applied Research Foundation of China(2006E0021M)
文摘To confirm sub-regular solution model valid for predicting the activity of component in binary oxide systems, seven systems in the whole concentration and twelve systems presenting saturation concentration have been studied. The total average relative errors of component 1 and 2 are 3.2 % and 4.1% respectively by application of the sub-regular solution model into the systems within the whole concentration. However, the total average relative errors are 16 % and 1088 % in the systems presenting saturation concentration. The results show that sub-regular solu- tion model is not good for predicting the systems presenting saturation concentration, especially for the systems con- taining acidic or neutral oxide. The reason may be that the influence of the two types of oxide on the configuration is greater in binary oxide systems. These oxides can be present in the form of complex anion partly, Si-O, Al-O, Ti-O and so on, for example (SiO4)4-. That is contrary to sub-regular solution model which is supposed that the oxide systems consist of cation and O2-. But compared with regular solution model and quasi-regular solution model, sub- regular solution model is closer to the characteristics of actual solution and the calculated results are superior.
基金supported by the National Natural Science Foundation of China(Nos.60406004,60890193,60736033)the National Key Micrometer/Nanometer Processing Laboratory,China
文摘A novel wet etching method for AlGaN/GaN heterojunction structures is proposed using thermal oxidation f ollowed by wet etching in KOH solution.It is found that an AlGaN/GaN heterostructure after high temperature oxidation above 700℃could be etched off in a homothermal(70℃) KOH solution while the KOH solution had no etching effects on the region of the AlGaN/GaN heterostructure protected by a SiO_2 layer during the oxidation process.A groove structure with 150 nm step depth on an AlGaN/GaN heterostructure was formed after 8 h thermal oxidation at 900℃followed by 30 min treatment in 70℃KOH solution.As the oxidation time increases,the etching depth approaches saturation and the roughness of the etched surface becomes much better.The physical mechanism of this phenomenon is also discussed.
基金supported by the National Basic Research Program of China(Grant No.2013CB228301)
文摘A waste heat recovery and denitrification system was developed for improving energy conservation and emissions control especially for control of PM2.5 particles and haze. The system uses enhanced heat and mass transfer techniques in a packed heat exchange tower with self-rotation and zero-pressure spraying, low temperature NO oxidation by ozone, and neutralization with an alkali solution. Operating data in a test project gave NOx in the exhaust flue gas of less than 30 mg/Nm3 with an ozone addition rate of 8 kg/h and spray water p H of 7.5–8, an average heat recovery of 3 MW, and an average heat supply of 7.2 MW.
基金the US Department of Energy(DOE),Office of Science,Basic Energy Sciences(BES),Materials Sciences and Engineering Division(VRC,JRM),and the Office of Science Early Career Research Program(VRC).SPB acknowledges support from the US National Science Foundation under Grant No.DMR-1037898CAB acknowledges support from the Laboratory Directed Research and Development program of Oak Ridge National Laboratory,managed by UT-Battelle,LLC,for the U.S.Department of Energy.This research used resources of the National Energy Research Scientific Computing Center,which is supported by the Office of Science of the US Department of Energy under Contract No.DE-AC02-05CH11231.
文摘We review our efforts to develop and implement robust computational approaches for exploring phase stability to facilitate the prediction-to-synthesis process of novel functional oxides.These efforts focus on a synergy between(i)electronic structure calculations for properties predictions,(ii)phenomenological/empirical methods for examining phase stability as related to both phase segregation and temperature-dependent transitions and(iii)experimental validation through synthesis and characterization.We illustrate this philosophy by examining an inaugural study that seeks to discover novel functional oxides with high piezoelectric responses.Our results show progress towards developing a framework through which solid solutions can be studied to predict materials with enhanced properties that can be synthesized and remain active under device relevant conditions.