This study investigated the coag-flocculation performance of oxidized starch coagulant (OSC) and its blends with alum and FeCl3 in removing turbidity from coal washery effluent at room temperature. A conventional labo...This study investigated the coag-flocculation performance of oxidized starch coagulant (OSC) and its blends with alum and FeCl3 in removing turbidity from coal washery effluent at room temperature. A conventional laboratory bench-scale jar test apparatus was employed for the experiments. Coag-flocculation parameters such as reaction order α, rate constant K, coagulation time τ, etc. were determined. The optimum pH was observed at 4.0, while the blend of 30.0 mg/L FeCl3 and 250.0 mg/L OSC achieved the optimum turbidity removal. Turbidity removal efficiency was recorded between 96.0% and 99.9% for various dosages and pH studied. The coagulation rate constants, K recorded range from 9.393 × 10-5 L/mg.min to 8.294 × 10-1 min-1, while coagulation periods τ, range from 3.8 s to 235.7 s for various dosages and pH studied. The use of OSC blended with FeCl3 showed high level of efficiency, for the treatment of coal washery effluent.展开更多
A protocol for selectively oxidizing aldehyde over hydroxymethyl group is developed, using biomass starch protected gold nanoparticles (NPs) as catalyst. The Au NPs show high selectivity that aldehyde is oxidized into...A protocol for selectively oxidizing aldehyde over hydroxymethyl group is developed, using biomass starch protected gold nanoparticles (NPs) as catalyst. The Au NPs show high selectivity that aldehyde is oxidized into carboxylic acid while alcoholic hydroxyl group stays intact in selective oxidation of 4-(hydroxymethyl)-benzaldehyde. The heterogeneous catalysis system is composed of soluble catalysts and insoluble substrate. The gold catalyst is prepared, preserved and applied for catalytic oxidation all in water. After reaction conditions are optimized, H2O2 is found to be the best oxidizing agent with complete conversion.Besides, the gold catalyst displays good versitility for aldehyde derivatives. After reaction completes, organic components are extracted by organic solvent and gold NPs in water are separated and recycled.展开更多
An industrialized technique of preparation for oxidized com starch using oxygen as oxidant was investigated in this paper. The industrialized preparation parameters were optimized as follows: reaction temperature 85-...An industrialized technique of preparation for oxidized com starch using oxygen as oxidant was investigated in this paper. The industrialized preparation parameters were optimized as follows: reaction temperature 85-95 ℃, oxygen flow rate 8-12 L/min, reaction time 210 min, the ratio of starch to water 1:5, 3.5 wt% of NaOH and 0.1 wt% of catalyst. The experimental results show that the concentration of hydrolysate-oxidaton product is 16-18 wt%. The powdered products were gained through dehydrated and powdered process using quadruple-effect evaporator, spray drying tower and guide shell mixer. The composting test indicates that the degradability of the oxidized corn starch can reach 76.4%. The complexation capacity of calcium ions reaches 108.5 mg per gram oxidized starch, and the detergency ratio (P) reaches 1.30 as builder.展开更多
Carboxymethyl starch/silver oxide nanocomposites(CMS-Ag_(2)O NCs)were successfully fabricated by modifying carboxymethyl starch(CMS)with Ag_(2)O obtained from an aqueous AgNO_(3)solution as silver source.Ag_(2)O nanop...Carboxymethyl starch/silver oxide nanocomposites(CMS-Ag_(2)O NCs)were successfully fabricated by modifying carboxymethyl starch(CMS)with Ag_(2)O obtained from an aqueous AgNO_(3)solution as silver source.Ag_(2)O nanoparticles(NPs)formed on the surface of CMS by ion exchange.Based on SEM images,the diameters of Ag_(2)O NPs were determined to be between 50 and 100 nm.From the XRD spectra of CMS-Ag_(2)O NCs,the new diffraction peaks appeared at 33.88°and 38.08°,which were attributed to the Ag_(2)O NPs.According to the XPS analysis,Ag 3d_(5/2)and Ag 3d_(3/2)peaks in CMS-Ag_(2)O NCs were fitted into two main peaks centered at 367.6 eV and 373.6 eV,which were attributed to Ag^(+).The antibacterial efficiencies of CMS-Ag_(2)O NCs against Escherichia coli,Staphylococcus aureus,Pseudoalteromonas tetraodonis,Micrococcus luteus,and Shewanella putrefaciens were determined to be 99.6%,99.7%,99.4%,99.5%,and 99.6%,respectively.The antibacterial efficiencies of CMS-Ag_(2)O NCs against the bacterial species were all greater than 99%.Therefore,these results indicated that CMS-Ag_(2)O NCs was highly effective as a bactericidal agent against multiple bacterial species.CMS-Ag_(2)O NCs can be further applied to antifouling coating.展开更多
Oxidized starch powder and cationic starch solution were reacted with alkyl ketene dimer(AKD) under heterogeneous conditions at 70℃ for 12 h.The AKD molecules reacted with starch hydroxyl groups to form β-keto ester...Oxidized starch powder and cationic starch solution were reacted with alkyl ketene dimer(AKD) under heterogeneous conditions at 70℃ for 12 h.The AKD molecules reacted with starch hydroxyl groups to form β-keto ester linkages under the above conditions.The reaction products were separated into CHCl_3-soluble and CHCl_3-insoluble fractions.FT-IR spectroscopy,SEM,Xray diffraction,and TG-DTA analyses of the CHCl_3-insoluble fraction indicated that β-keto ester substituents were introduced to hydroxyl groups on the starch surfaces.The results indicated that hydrogen bonds between the starch molecules were disrupted under heterogeneous conditions upon heating.The activity and accessibility of hydroxyl groups were enhanced,as a result of which β-keto ester bonds were produced between AKD and starch.Based on these results,we speculate that the β-keto esters which existed in the sheets sized by AKD emulsions were generated by the reaction between AKD and starch.展开更多
The alumina ceramics with the homogeneous microstructure and the higher density were fabricated via the modified-starch consolidation process by 1.0 wt% of a modified starch as a consolidator/ binder. The swelling beh...The alumina ceramics with the homogeneous microstructure and the higher density were fabricated via the modified-starch consolidation process by 1.0 wt% of a modified starch as a consolidator/ binder. The swelling behavior of the modified oxidized tapioca starch was analyzed by optical microscope, and two other corn starches (common corn starch and high amylose corn starch) were also analyzed for comparison. The modified starch used as a binder for the consolidation swelled at about 55 ℃, began to gelatinize at 65 ℃ and then was completely gelatinized at 75 ℃. But the corn starches could not be completely gelatinized even at 80 ℃ for 1 h. The high-strength green bodies (10.6 MPa) with the complex shapes were produced. The green bodies were sintered without any binder burnout procedure at 1 700 ℃ and a relative density of 95.3% was obtained for the sintered bodies, which is similar to that of the sintered sample formed by conventional slip casting. In addition, the effect of temperature on the apparent viscosity of the starch/alumina slurry in the process was investigated, and the corresponding mechanism for the starch consolidation was discussed.展开更多
文摘This study investigated the coag-flocculation performance of oxidized starch coagulant (OSC) and its blends with alum and FeCl3 in removing turbidity from coal washery effluent at room temperature. A conventional laboratory bench-scale jar test apparatus was employed for the experiments. Coag-flocculation parameters such as reaction order α, rate constant K, coagulation time τ, etc. were determined. The optimum pH was observed at 4.0, while the blend of 30.0 mg/L FeCl3 and 250.0 mg/L OSC achieved the optimum turbidity removal. Turbidity removal efficiency was recorded between 96.0% and 99.9% for various dosages and pH studied. The coagulation rate constants, K recorded range from 9.393 × 10-5 L/mg.min to 8.294 × 10-1 min-1, while coagulation periods τ, range from 3.8 s to 235.7 s for various dosages and pH studied. The use of OSC blended with FeCl3 showed high level of efficiency, for the treatment of coal washery effluent.
基金supported by the National Natural Science Foundation of China(No.11674001)the Ministry of Education,Anhui Provincial Natural Science Foundation(No.1708085MA07 and No.1608085QB39)Doctoral Startup Foundation of Anhui University(No.10113190077)
文摘A protocol for selectively oxidizing aldehyde over hydroxymethyl group is developed, using biomass starch protected gold nanoparticles (NPs) as catalyst. The Au NPs show high selectivity that aldehyde is oxidized into carboxylic acid while alcoholic hydroxyl group stays intact in selective oxidation of 4-(hydroxymethyl)-benzaldehyde. The heterogeneous catalysis system is composed of soluble catalysts and insoluble substrate. The gold catalyst is prepared, preserved and applied for catalytic oxidation all in water. After reaction conditions are optimized, H2O2 is found to be the best oxidizing agent with complete conversion.Besides, the gold catalyst displays good versitility for aldehyde derivatives. After reaction completes, organic components are extracted by organic solvent and gold NPs in water are separated and recycled.
文摘An industrialized technique of preparation for oxidized com starch using oxygen as oxidant was investigated in this paper. The industrialized preparation parameters were optimized as follows: reaction temperature 85-95 ℃, oxygen flow rate 8-12 L/min, reaction time 210 min, the ratio of starch to water 1:5, 3.5 wt% of NaOH and 0.1 wt% of catalyst. The experimental results show that the concentration of hydrolysate-oxidaton product is 16-18 wt%. The powdered products were gained through dehydrated and powdered process using quadruple-effect evaporator, spray drying tower and guide shell mixer. The composting test indicates that the degradability of the oxidized corn starch can reach 76.4%. The complexation capacity of calcium ions reaches 108.5 mg per gram oxidized starch, and the detergency ratio (P) reaches 1.30 as builder.
基金supported by the National Key Research and Development Project(No.2019YFC0312103)the Open Fund of Shandong Key Laboratory of Corrosion Science(No.KLCS201905)。
文摘Carboxymethyl starch/silver oxide nanocomposites(CMS-Ag_(2)O NCs)were successfully fabricated by modifying carboxymethyl starch(CMS)with Ag_(2)O obtained from an aqueous AgNO_(3)solution as silver source.Ag_(2)O nanoparticles(NPs)formed on the surface of CMS by ion exchange.Based on SEM images,the diameters of Ag_(2)O NPs were determined to be between 50 and 100 nm.From the XRD spectra of CMS-Ag_(2)O NCs,the new diffraction peaks appeared at 33.88°and 38.08°,which were attributed to the Ag_(2)O NPs.According to the XPS analysis,Ag 3d_(5/2)and Ag 3d_(3/2)peaks in CMS-Ag_(2)O NCs were fitted into two main peaks centered at 367.6 eV and 373.6 eV,which were attributed to Ag^(+).The antibacterial efficiencies of CMS-Ag_(2)O NCs against Escherichia coli,Staphylococcus aureus,Pseudoalteromonas tetraodonis,Micrococcus luteus,and Shewanella putrefaciens were determined to be 99.6%,99.7%,99.4%,99.5%,and 99.6%,respectively.The antibacterial efficiencies of CMS-Ag_(2)O NCs against the bacterial species were all greater than 99%.Therefore,these results indicated that CMS-Ag_(2)O NCs was highly effective as a bactericidal agent against multiple bacterial species.CMS-Ag_(2)O NCs can be further applied to antifouling coating.
基金financial support from Shandong Province Education Department(Grant No.J14 LC11)National Natural Science Foundation of China(Grant No.21406126 and 21576146)+2 种基金Department of Science and Technology of Shandong Province(Grant No.2014 GSF116001)973(Grant No.2014 CB460610)Department of Science and Technology of Shandong Province(Grant No.2015 ZDXX0403 B03)
文摘Oxidized starch powder and cationic starch solution were reacted with alkyl ketene dimer(AKD) under heterogeneous conditions at 70℃ for 12 h.The AKD molecules reacted with starch hydroxyl groups to form β-keto ester linkages under the above conditions.The reaction products were separated into CHCl_3-soluble and CHCl_3-insoluble fractions.FT-IR spectroscopy,SEM,Xray diffraction,and TG-DTA analyses of the CHCl_3-insoluble fraction indicated that β-keto ester substituents were introduced to hydroxyl groups on the starch surfaces.The results indicated that hydrogen bonds between the starch molecules were disrupted under heterogeneous conditions upon heating.The activity and accessibility of hydroxyl groups were enhanced,as a result of which β-keto ester bonds were produced between AKD and starch.Based on these results,we speculate that the β-keto esters which existed in the sheets sized by AKD emulsions were generated by the reaction between AKD and starch.
基金the Foundation of National Defence Science and Technology of China(No.51412020203JW1608)
文摘The alumina ceramics with the homogeneous microstructure and the higher density were fabricated via the modified-starch consolidation process by 1.0 wt% of a modified starch as a consolidator/ binder. The swelling behavior of the modified oxidized tapioca starch was analyzed by optical microscope, and two other corn starches (common corn starch and high amylose corn starch) were also analyzed for comparison. The modified starch used as a binder for the consolidation swelled at about 55 ℃, began to gelatinize at 65 ℃ and then was completely gelatinized at 75 ℃. But the corn starches could not be completely gelatinized even at 80 ℃ for 1 h. The high-strength green bodies (10.6 MPa) with the complex shapes were produced. The green bodies were sintered without any binder burnout procedure at 1 700 ℃ and a relative density of 95.3% was obtained for the sintered bodies, which is similar to that of the sintered sample formed by conventional slip casting. In addition, the effect of temperature on the apparent viscosity of the starch/alumina slurry in the process was investigated, and the corresponding mechanism for the starch consolidation was discussed.