期刊文献+
共找到246,753篇文章
< 1 2 250 >
每页显示 20 50 100
Effects of Additives on the Microstructure and Tribology Performance of Ta-12W Alloy Micro-Arc Oxidation Coating
1
作者 刘玲 HU Changgang +1 位作者 CHENG Wendong 刘兴泉 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期142-149,共8页
Oxide ceramic coatings were fabricated on tantalum alloys by micro-arc oxidation (MAO) to improve their hardness and tribological properties. The MAO coatings were manufactured in a mixed silicatephosphate electrolyte... Oxide ceramic coatings were fabricated on tantalum alloys by micro-arc oxidation (MAO) to improve their hardness and tribological properties. The MAO coatings were manufactured in a mixed silicatephosphate electrolyte containing NaF and/or EDTA (ethylene diamine tetraacetic acid). The surface morphology,cross-sectional view, chemical composition, hardness, and wear performance of the coatings were analysed. As revealed by the scanning electron microscopy, silica-rich nodules appear on the MAO coating obtained in the silicate-phosphate electrolyte, but the formation of nodules is inhibited with NaF and/or EDTA in the electrolyte.Also, they reduce the roughness and improve the compactness of the coatings, which are composed of Ta_(2)O_(5),(Ta, O), and TaO. A thick and hard coating is obtained in the NaF-containing electrolyte, and the tribology performance is effectively improved. With additives, the nodule structure is detached from the coating surface and dissolved in the electrolyte. By using NaF as an electrolyte additive, the abrasion performance of the MAO coating is enhanced by decreasing the nodule structure, increasing the size of micropores, and improving the coating hardness. 展开更多
关键词 micro-arc oxidation tantalum alloy ADDITIVES tribology performance
下载PDF
Enhancing corrosion resistance of plasma electrolytic oxidation coatings on AM50 Mg alloy by inhibitor containing Ba(NO_(3))_(2) solutions
2
作者 Jirui Ma Xiaopeng Lu +3 位作者 Santosh Prasad Sah Qianqian Chen You Zhang Fuhui Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第9期2048-2061,共14页
To enhance the long-term corrosion resistance of the plasma electrolytic oxidation(PEO)coating on the magnesium(Mg)alloy,an inorganic salt combined with corrosion inhibitors was used for posttreatment of the coating.I... To enhance the long-term corrosion resistance of the plasma electrolytic oxidation(PEO)coating on the magnesium(Mg)alloy,an inorganic salt combined with corrosion inhibitors was used for posttreatment of the coating.In this study,the corrosion performance of PEO-coated AM50 Mg was significantly improved by loading sodium lauryl sulfonate(SDS)and sodium dodecyl benzene sulf-onate into Ba(NO_(3))_(2) post-sealing solutions.Scanning electron microscopy,X-ray photoelectron spectroscopy,X-ray diffraction,Fourier transform infrared spectrometer,and ultraviolet-visible analyses showed that the inhibitors enhanced the incorporation of BaO_(2) into PEO coatings.Electrochemical impedance showed that post-sealing in Ba(NO_(3))_(2)/SDS treatment enhanced corrosion resistance by three orders of magnitude.The total impedance value remained at 926Ω·cm^(2)after immersing in a 0.5wt%NaCl solution for 768 h.A salt spray test for 40 days did not show any obvious region of corrosion,proving excellent post-sealing by Ba(NO_(3))_(2)/SDS treatment.The corrosion resistance of the coating was enhanced through the synergistic effect of BaO2 pore sealing and SDS adsorption. 展开更多
关键词 Mg plasma electrolytic oxidation posttreatment corrosion resistance
下载PDF
Comparative investigation of microstructure and high-temperature oxidation resistance of high-velocity oxy-fuel sprayed CoNiCrAlY/nano-Al_(2)O_(3) composite coatings using satellited powders 被引量:2
3
作者 Pejman Zamani Zia Valefi 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第9期1779-1791,共13页
Satellited CoNiCrAlY–Al_(2)O_(3)feedstocks with 2wt%, 4wt%, and 6wt% oxide nanoparticles and pure CoNiCrAlY powder were deposited by the high-velocity oxy fuel process on an Inconel738 superalloy substrate. The oxida... Satellited CoNiCrAlY–Al_(2)O_(3)feedstocks with 2wt%, 4wt%, and 6wt% oxide nanoparticles and pure CoNiCrAlY powder were deposited by the high-velocity oxy fuel process on an Inconel738 superalloy substrate. The oxidation test was performed at 1050℃ for 5, 50, 100,150, 200, and 400 h. The microstructure and phase composition of powders and coatings were characterized by scanning electron microscopy and X-ray diffraction, respectively. The bonding strength of the coatings was also evaluated. The results proved that with the increase in the percentage of nanoparticles(from 2wt% to 6wt%), the amount of porosity(from 1vol% to 4.7vol%), unmelted particles, and roughness of the coatings(from 4.8 to 8.8 μm) increased, and the bonding strength decreased from 71 to 48 MPa. The thicknesses of the thermally grown oxide layer of pure and composite coatings(2wt%, 4wt%, and 6wt%) after 400 h oxidation were measured as 6.5, 5.5, 7.6, and 8.1 μm, respectively.The CoNiCrAlY–2wt% Al_(2)O_(3)coating showed the highest oxidation resistance due to the diffusion barrier effect of well-dispersed nanoparticles. The CoNiCrAlY–6wt% Al_(2)O_(3)coating had the lowest oxidation resistance due to its rough surface morphology and porous microstructure. 展开更多
关键词 MCrAlY coating CoNiCrAlY-Al_(2)O_(3)composite satellited feedstock MICROSTRUCTURE high-temperature oxidation high-velocity oxy-fuel spraying
下载PDF
Insights into the oxidation resistance mechanism and tribological behaviors of multilayered TiSiN/CrVxN hard coatings 被引量:1
4
作者 Hongbo Ju Moussa Athmani +6 位作者 Jing Luan Abbas AL-Rjoub Albano Cavaleiro Talha Bin Yaqub Abdelouahad Chala Fabio Ferreira Filipe Fernandes 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第12期2459-2468,共10页
In the last decades,vanadium alloyed coatings have been introduced as potential candidates for self-lubrication due to their perfect tribological properties.In this work,the influence of V incorporation on the wear pe... In the last decades,vanadium alloyed coatings have been introduced as potential candidates for self-lubrication due to their perfect tribological properties.In this work,the influence of V incorporation on the wear performance and oxidation resistance of TiSiN/CrN film coatings deposited by direct current(DC)reactive magnetron sputtering is investigated.The results show that vanadium incorporation significantly decreases the oxidation resistance of the coatings.In general,two layers are formed during the oxidation process:i)Ti(V)O_(2) on top,followed by a protective layer,which is subdivided into two layers,Cr_(2)O_(3) and Si-O.ii)The diffusion of V controls the oxidation of V-containing coatings.The addition of vanadium improves the wear resistance of coatings,and the wear rate decreases with increasing V content in the coatings;however,the friction coefficient is independent of the chemical composition of the coatings.The wear of the V-containing coatings is driven by polishing wear. 展开更多
关键词 DC magnetron sputtering TiSiN/CrVxN multilayer coatings oxidation resistance TRIBOLOGY wear rate
下载PDF
Effect of Rare Earth Doping on the Tensile Properties of High Temperature Oxidation Coating
5
作者 ZHANG Shilei LI Shuai +2 位作者 ZHAO Yuncai WANG Ximao LIU Cunyu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第6期1449-1456,共8页
The failure process was characterized by complex diffusion of elements in the bonding layer,TGO growth and growth stress inside the coating.We studied the aluminum migration phenomenon of NiCoCrAlY and NiCoCrAlYHf coa... The failure process was characterized by complex diffusion of elements in the bonding layer,TGO growth and growth stress inside the coating.We studied the aluminum migration phenomenon of NiCoCrAlY and NiCoCrAlYHf coatings under high temperature oxidation,TGO growth characteristics,the microstructure and composition of the bonding layer,and integrates them into the description of the surface strain under coating tension.The experimental results show that the TGO growth rate of NiCoCrAIYHf coating is lower than that of NiCoCrAIY coating,and the formed TGO is thinner.After high temperature oxidation,the cracking time of NiCoCrAIY coating is advanced,while the cracking time of rare earth doped coating is delayed.The addition of rare earth elements can effectively inhibit the generation of spinel phase,improve the fracture toughness of TGO,refine the grains in the bonding layer,and increase the grain boundary strengthening by 29.1 MPa which is consistent with the experimental value.Therefore,the yield strength of the doped coating is improved and the crack time of the coating is delayed. 展开更多
关键词 thermal barrier coating NiCoCrAIYHf thermal growth oxides high temperature oxidation surfacecrack
下载PDF
Corrosion resistance and mechanisms of smart micro-arc oxidation/epoxy resin coatings on AZ31 Mg alloy: Strategic positioning of nanocontainers
6
作者 Ai-meng Zhang Chengbao Liu +4 位作者 Pu-sheng Sui Cong Sun Lan-yue Cui M.Bobby Kannan Rong-Chang Zeng 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第12期4562-4574,共13页
Smart micro-arc oxidation(MAO)/epoxy resin(EP) composite coatings were formed on AZ31 magnesium(Mg) alloy. Mesoporous silica nanocontainers(MSN) encapsulated with sodium benzoate(SB) corrosion inhibitors were strategi... Smart micro-arc oxidation(MAO)/epoxy resin(EP) composite coatings were formed on AZ31 magnesium(Mg) alloy. Mesoporous silica nanocontainers(MSN) encapsulated with sodium benzoate(SB) corrosion inhibitors were strategically incorporated in the MAO micropores and in the top EP layer. The influence of the strategic positioning of the nanocontainers on the corrosion protective performance of coating was investigated. The experimental results and analysis indicated that the superior corrosion resistance of the hybrid coating is ascribed to the protection mechanisms of the nanocontainers. This involves two phenomena:(1) the presence of the nanocontainers in the MAO micropores decreased the distance between MSN@SB and the substrate, demonstrating a low admittance value(^5.18 × 10^(-8)Ω^(-1)), and thus exhibiting significant corrosion inhibition and self-healing function;and(2) the addition of nanocontainers in the top EP layer densified the coating via sealing of the inherent defects, and hence the coating maintained higher resistance even after 90 days of immersion(1.13 × 10^(10)Ω cm^(2)).However, the possibility of corrosion inhibitors located away from the substrate transport to the substrate is reduced, reducing its effective utilization rate. This work demonstrates the importance of the positioning of nanocontainers in the coating for enhanced corrosion resistance,and thereby providing a novel perspective for the design of smart protective coatings through regulating the distribution of nanocontainers in the coatings. 展开更多
关键词 NANOCONTAINERS Self-healing coating Micro-arc oxidation Corrosion protection Magnesium alloys
下载PDF
Corrosion behavior of composite coatings containing hydroxyapatite particles on Mg alloys by plasma electrolytic oxidation: A review
7
作者 Arash Fattah-alhosseini Razieh Chaharmahali +1 位作者 Sajad Alizad Mosab Kaseem 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第9期2999-3011,共13页
Mg and its alloys have been introduced as promising biodegradable materials for biomedical implant applications due to their excellent biocompatibility, mechanical behavior, and biodegradability. However, their suscep... Mg and its alloys have been introduced as promising biodegradable materials for biomedical implant applications due to their excellent biocompatibility, mechanical behavior, and biodegradability. However, their susceptibility to rapid corrosion within the body poses a significant challenge and restricts their applications. To overcome this issue, various surface modification techniques have been developed to enhance the corrosion resistance and bioactivity of Mg-based implants. PEO is a potent technique for producing an oxide film on a surface that significantly minimizes the tendency to corrode. However, the inevitable defects due to discharges and poor biological activity during the coating process remain a concern. Therefore, adding suitable particles during the coating process is a suitable solution. Hydroxyapatite(HAp)has attracted much attention in the development of biomedical applications in the scientific community. HAp shows excellent biocompatibility due to its similarity in chemical composition to the mineral portion of bone. Therefore, its combination with Mg-based implants through PEO has shown significant improvements in their corrosion resistance and bioactivity. This review paper provides a comprehensive overview of the recent advances in the preparation, characterization, corrosion behavior and bioactivity applications of HAp particles on Mg-based implants by PEO. 展开更多
关键词 Mg and its alloys HYDROXYAPATITE Corrosion behavior Composite coatings Plasma electrolytic oxidation(peo)
下载PDF
Improved Corrosion Behavior of Biodegradable Mg-4Zn-1Mn Alloy Modified by Sr/F co-doped CaP Micro-arc Oxidation Coatings
8
作者 Weirong LI Yanfang LI +7 位作者 Qian LI Xuan XIONG Fangfei LIU Ronghui LI Heng LI Dong PANG Jia LU Xuan ZHANG 《Research and Application of Materials Science》 2023年第2期1-8,共8页
The Sr/F co-doped CaP(Sr/F-CaP)coatings were prepared by micro-arc oxidation(MAO)under different voltages to modify the microstructure and corrosion behavior of Mg-4Zn-1Mn alloy.The surface and interface characteristi... The Sr/F co-doped CaP(Sr/F-CaP)coatings were prepared by micro-arc oxidation(MAO)under different voltages to modify the microstructure and corrosion behavior of Mg-4Zn-1Mn alloy.The surface and interface characteristics investigated using scanning electron microscopy(SEM)and energy dispersive X-ray spectrometer(EDS)showed that the MAO coatings displayed uneven crater-like holes and tiny cracks under lower voltage,while they exhibited relatively homogeneous crater-like holes without cracks under higher voltage.The thickness of MAO coatings increased with increasing voltage.The corrosion behavior of Mg-4Zn-1Mn alloy was improved by the MAO coatings.The MAO coatings prepared under 450 V and 500 V voltages possessed the best corrosion resistance with regard to the electrochemical corrosion tests and immersion corrosion tests,respectively.The MAO coatings fabricated under 450-500 V could provide a better corrosion protection effect for the substrate. 展开更多
关键词 Biodegradable Mg alloys Mg-4Zn-1Mn alloy Micro-arc oxidation Sr/F co-doped CaP coatings
下载PDF
A super wear-resistant coating for Mg alloys achieved by plasma electrolytic oxidation and discontinuous deposition 被引量:1
9
作者 Xixi Dong Mingxu Xia +4 位作者 Feng Wang Hailin Yang Gang Ji E.A.Nyberg Shouxun Ji 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第8期2939-2952,共14页
Magnesium alloys are lightweight materials with great potential,and plasma electrolytic oxidation(PEO)is effective surface treatment for necessary improvement of corrosion resistance of magnesium alloys.However,the∼1... Magnesium alloys are lightweight materials with great potential,and plasma electrolytic oxidation(PEO)is effective surface treatment for necessary improvement of corrosion resistance of magnesium alloys.However,the∼14µm thick and rough PEO protection layer has inferior wear resistance,which limits magnesium alloys as sliding or reciprocating parts,where magnesium alloys have special advantages by their inherent damping and denoising properties and attractive light-weighting.Here a novel super wear-resistant coating for magnesium alloys was achieved,via the discontinuous sealing(DCS)of a 1.3µm thick polytetrafluoroethylene(PTFE)polymer layer with an initial area fraction(A_(f))of 70%on the necessary PEO protection layer by selective spraying,and the wear resistance was exceptionally enhanced by∼5500 times in comparison with the base PEO coating.The initial surface roughness(Sa)under PEO+DCS(1.54µm)was imperfectly 59%higher than that under PEO and conventional continuous sealing(CS).Interestingly,DCS was surprisingly 20 times superior for enhancing wear resistance in contrast to CS.DCS induced nano-cracks that splitted DCS layer into multilayer nano-blocks,and DCS also provided extra space for the movement of nano-blocks,which resulted in rolling friction and nano lubrication.Further,DCS promoted mixed wear of the PTFE polymer layer and the PEO coating,and the PTFE layer(HV:6 Kg·mm^(−2),A_(f):92.2%)and the PEO coating(HV:310 Kg·mm^(−2),A_(f):7.8%)served as the soft matrix and the hard point,respectively.Moreover,the dynamic decrease of Sa by 29%during wear also contributed to the super wear resistance.The strategy of depositing a low-frictional discontinuous layer on a rough and hard layer or matrix also opens a window for achieving super wear-resistant coatings in other materials. 展开更多
关键词 Magnesium alloy coating Plasma electrolytic oxidation Discontinuous deposition Wear resistance MECHANISM
下载PDF
Corrosion resistance and anti-soiling performance of micro-arc oxidation/graphene oxide/stearic acid superhydrophobic composite coating on magnesium alloys 被引量:7
10
作者 Dong Wang Chen Ma +4 位作者 Jinyu Liu Weidong Li Wei Shang Ning Peng Yuqing Wen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第6期1128-1139,共12页
Magnesium(Mg)alloys,the lightest metal construction material used in industry,play a vital role in future development.However,the poor corrosion resistance of Mg alloys in corrosion environments largely limits their p... Magnesium(Mg)alloys,the lightest metal construction material used in industry,play a vital role in future development.However,the poor corrosion resistance of Mg alloys in corrosion environments largely limits their potential wide applications.Therefore,a micro-arc oxidation/graphene oxide/stearic acid(MAO/GO/SA)superhydrophobic composite coating with superior corrosion resistance was fabricated on a Mg alloy AZ91D through micro-arc oxidation(MAO)technology,electrodeposition technique,and self-assembly technology.The composition and microstructure of the coating were characterized by scanning electron microscopy,X-ray diffraction,energy dispersive spectroscopy,and Raman spectroscopy.The effective protection of the MAO/GO/SA composite coating applied to a substrate was evaluated using potentiodynamic polarization,electrochemical impedance spectroscopy tests,and salt spray tests.The results showed that the MAO/GO/SA composite coating with a petal spherical structure had the best superhydrophobicity,and it attained a contact angle of 159.53°±2°.The MAO/GO/SA composite coating exhibited high resistance to corrosion,according to electrochemical and salt spray tests. 展开更多
关键词 magnesium alloy composite coating SUPERHYDROPHOBIC corrosion resistance anti-soiling performance
下载PDF
ZIF-8-based micro-arc oxidation composite coatings enhanced the corrosion resistance and superhydrophobicity of a Mg alloy 被引量:7
11
作者 Shiquan Jiang Zhiyuan Zhang +3 位作者 Dong Wang Yuqing Wen Ning Peng Wei Shang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第4期1367-1380,共14页
Mg alloys are considered the most promising engineering materials because of their unique properties.However,the uncontrolled corrosion rate of these alloys limits their applications.Therefore,in this study,a micro-ar... Mg alloys are considered the most promising engineering materials because of their unique properties.However,the uncontrolled corrosion rate of these alloys limits their applications.Therefore,in this study,a micro-arc oxidation layer was used as a transition layer to“directly”grow a zinc-based metal-organic framework(MOF)composite coating on the surface of a Mg alloy(AZ91D).Herein,the two zeolitic imidazolate framework(ZIF-8)coatings with different morphologies were separately prepared by homologous metal oxide induction and a one-step in-situ growth method.The superhydrophobic composite coating showed strong hydrophobicity and self-cleaning properties,which could prevent the penetration of water and corrosive ions(Cl^(−))into the surface of AZ91D.Electrochemical tests demonstrated that the super-hydrophobic composite coatings greatly enhanced the corrosion resistance of AZ91D,and the corrosion current density decreased from 10^(−5)to 10^(−9)A/cm^(2).These results indicate that the ZIF-8 coatings are beneficial for improving the hydrophobicity and enhancing the corrosion resistance of Mg alloys.Therefore,MOF composite coatings provide a new strategy that can be used to prepare multifunctional anticorrosion coatings on metal substrates. 展开更多
关键词 Mg alloy Composite coating Metal-organic framework Corrosion resistance SUPERHYDROPHOBICITY
下载PDF
Study on oxygen transport and titanium oxidation in coating cracks under parallel gas flow based on LBM modelling
12
作者 Shengfeng Luo Song Zhang +3 位作者 Yiping Zeng Hui Zhang Lili Zheng Zhaopeng Xu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第4期15-24,共10页
The oxygen transportation from surrounding air to coating cracks is an important factor in the oxidation and ignition of titanium alloy. In this work, the oxygen transport and surface oxidation of titanium in inclined... The oxygen transportation from surrounding air to coating cracks is an important factor in the oxidation and ignition of titanium alloy. In this work, the oxygen transport and surface oxidation of titanium in inclined cracks of coating under parallel airflow are studied with the lattice Boltzmann method(LBM).A boundary scheme of LBM about surface reaction is developed. The conversion factors are utilized to build the relationship between the physical scale and the lattice scale. The reliability of the LBM model is validated by the finite element method(FEM). The results show that the convective mass transport driven by the surrounding airflow and the vortex structure formed inside the crack are the two significant factors that influence the oxygen transport in cracks. The convective mass transfer plays a major role in oxygen transport when the inclination angle of the crack is small. For the cases with a large inclination angle, the oxygen transfer from the top to the bottom of the crack is mainly controlled by mass diffusion mechanism. The oxygen concentration in inclined cracks is generally less than that in vertical cracks, and oxidation and ignition of the substrate titanium might be more likely to occur in relatively vertical cracks. 展开更多
关键词 coating crack oxidation Transport IGNITION Numerical simulation
下载PDF
Oxidation and Electrical Properties of Cu-Mn_(3)O_(4)Composite Coating Obtained by Electrodeposition on SOFC Interconnects
13
作者 吕烨 LUO Shengyun 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第1期72-78,共7页
Cu-Mn_(3)O_(4)composite coating was prepared on the SUS 430 ferritic stainless steel by electrodeposition and then exposed in air at 800℃corresponding to the cathode atmosphere of solid oxide fuel cell(SOFC).A dual-l... Cu-Mn_(3)O_(4)composite coating was prepared on the SUS 430 ferritic stainless steel by electrodeposition and then exposed in air at 800℃corresponding to the cathode atmosphere of solid oxide fuel cell(SOFC).A dual-layer oxide structure mainly comprising an external layer of CuO followed by(Cu,Mn,Fe)_(3)O_(4)spinel and an internal layer of Cr-rich oxide was thermally developed on the coated steel.The scale area-specific resistances(ASRs)of the coated steels were lower than the scale ASR of the uncoated steel after identical thermal exposure.The external layer of CuO/(Cu,Mn,Fe)_(3)O_(4)spinel not only served as a barrier to reduce the growth rate of Cr-rich oxide internal layer and to suppress the outward diffusion of Cr,but also lowered the surface scale ASRs considerably. 展开更多
关键词 solid oxide fuel cell steel interconnect Cu-Mn_(3)O_(4)composite coating area specific resistance
下载PDF
Formation process of composite plasma electrolytic oxidation coating containing zirconium oxides on AM50 magnesium alloy 被引量:8
14
作者 刘锋 单大勇 +1 位作者 宋影伟 韩恩厚 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第4期943-948,共6页
The formation processes of a composite ceramic coating on AM50 magnesium alloy prepared by plasma electrolytic oxidation (PEO) in a K 2 ZrF 6 electrolyte solution were studied by scanning electron microscope (SEM)... The formation processes of a composite ceramic coating on AM50 magnesium alloy prepared by plasma electrolytic oxidation (PEO) in a K 2 ZrF 6 electrolyte solution were studied by scanning electron microscope (SEM) and energy dispersive X-ray spectroscope (EDX). Electrochemical impedance spectroscopy (EIS) tests were used to study the variation of the corrosion resistance of the coating during the PEO treatment. The results show that the coating formed on Mg alloy is mainly composed of MgO and MgF 2 when the applied voltage is lower than the sparking voltage, and zirconium oxides start to be deposited on Mg substrate after the potential exceeding the sparking voltage. The corrosion resistance of the coating increases with increasing the applied voltage. 展开更多
关键词 plasma electrolytic oxidation coating zirconium oxide MGO corrosion resistance
下载PDF
Corrosion behavior of micro-arc oxidation coating on AZ91D magnesium alloy in NaCl solutions with different concentrations 被引量:13
15
作者 郭惠霞 马颖 +3 位作者 王劲松 王宇顺 董海荣 郝远 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第7期1786-1793,共8页
Ceramic oxide coatings were prepared on AZ91D magnesium alloys in alkaline silicate solution using micro-arc oxidation(MAO) technique.The corrosion behavior of MAO coating on AZ91D magnesium alloys in NaCl solutions... Ceramic oxide coatings were prepared on AZ91D magnesium alloys in alkaline silicate solution using micro-arc oxidation(MAO) technique.The corrosion behavior of MAO coating on AZ91D magnesium alloys in NaCl solutions with different concentrations(0.1%,0.5%,1.0%,3.5% and 5.0% in mass fraction) was evaluated by electrochemical measurements and immersion tests.The results showed that the corrosion rate of the MAO coated AZ91D increased with increasing chloride ion concentration.The main form of corrosion failure was localized corrosion for the MAO coated AZ91D immersed in higher concentration NaCl solutions(1.0%,3.5% and 5.0%),while it was general corrosion in dilute NaCl solutions(0.1% and 0.5%).Two different stages of the failure process of the MAO coated AZ91D could be identified:1) occurrence of the metastable pits and 2) growth of the pits.Different equivalent circuits were also proposed based on the results of electrochemical impedance spectroscopy(EIS) for the MAO coated AZ91D immersed in different concentrations of NaCl solutions for 120 h. 展开更多
关键词 micro-arc oxidation coating AZ91D magnesium alloy corrosion behavior chloride ion concentration electrochemical techniques
下载PDF
Effects of current density on microstructure and properties of plasma electrolytic oxidation ceramic coatings formed on 6063 aluminum alloy 被引量:10
16
作者 项南 宋仁国 +3 位作者 庄俊杰 宋若希 陆筱雅 苏旭平 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第3期806-813,共8页
Plasma electrolytic oxidation (PEO) ceramic coatings were fabricated in a silicate-based electrolyte with the addition of potassium fluorozirconate (K2ZrF6) on 6063 aluminum alloy, and the effects of current density o... Plasma electrolytic oxidation (PEO) ceramic coatings were fabricated in a silicate-based electrolyte with the addition of potassium fluorozirconate (K2ZrF6) on 6063 aluminum alloy, and the effects of current density on microstructure and properties of the PEO coatings were studied. It was found that pore density of the coatings decreased with increasing the current density. The tribological and hardness tests suggested that the ceramic coating produced under the current density of 15 A/dm2showed the best mechanical property, which matched well with the phase analysis. Electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization curves proved that the coating obtained under 15 A/dm2 displayed the best anti-corrosion property, which was directly connected with morphologies of coatings. 展开更多
关键词 6063 aluminum alloy ceramic coating plasma electrolytic oxidation(PEO) current density MICROSTRUCTURE mechanical property
下载PDF
Formation mechanism and oxidation behavior of MoSi_2-SiC protective coating prepared by chemical vapor infiltration/reaction 被引量:5
17
作者 何子博 李贺军 +2 位作者 史小红 付前刚 吴恒 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第7期2100-2106,共7页
In order to protect C/C composites from oxidation, SiC-MoSi2 composite coating was synthesized by chemical vapor infiltration /reaction (CVI/CVR) technology. A porous Mo layer was prefabricated on SiC coated C/C com... In order to protect C/C composites from oxidation, SiC-MoSi2 composite coating was synthesized by chemical vapor infiltration /reaction (CVI/CVR) technology. A porous Mo layer was prefabricated on SiC coated C/C composites, and then MoSi2 and SiC were subsequently prepared in a CVI /CVR process using methyltrichlorosilane (MTS) as precursor. The deposition and reaction mechanism of the MoSi2-SiC composite coating was investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The oxidation behavior of SiC-MoSi2 coated specimens was tested. The results show that the porous Mo layer can be densified with SiC phase decomposed from MTS, and transformed into SiC-MoSi2 by reacting with MTS as well. A dense composite coating was prepared with optimized deposition parameters. The coated specimen exhibits a good oxidation resistance with a little mass loss of 1.25% after oxidation at 1500 °C for 80 h. 展开更多
关键词 MoSi2-SiC coating deposition temperature initial partial pressure of MTS oxidation resistance
下载PDF
Preparation and oxidation behaviour of electrodeposited Ni-CeO_2 nanocomposite coatings 被引量:4
18
作者 张海军 周月波 孙俭峰 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第7期2011-2020,共10页
Ni-CeO2 nanocomposite coatings with different CeO2 contents were prepared by codeposition of Ni and CeO2 nanoparticles with an average particle size of 7 nm onto pure Ni surfaces from a nickel sulfate. The CeO2 nanopa... Ni-CeO2 nanocomposite coatings with different CeO2 contents were prepared by codeposition of Ni and CeO2 nanoparticles with an average particle size of 7 nm onto pure Ni surfaces from a nickel sulfate. The CeO2 nanoparticles were dispersed in the electrodeposited nanocrystalline Ni grains (with a size range of 10-30 nm). The isothermal oxidation behaviours of Ni-CeO2 nanocomposite coatings with two different CeO2 particles contents and the electrodeposited pure Ni coating were comparatively investigated in order to elucidate the effect of CeO2 at different temperatures and also CeO2 contents on the oxidation behaviour of Ni-CeO2 nanocomposite coatings. The results show that the as-codeposited Ni-CeO2 nanocomposite coatings have a superior oxidation resistance compared with the electrodeposited pure Ni coating at 800 °C due to the codeposited CeO2 nanoparticles blocking the outward diffusion of nickel along the grain boundaries. However, the effects of CeO2 particles on the oxidation resistance significantly decrease at 1050 °C and 1150 °C due to the outward-volume diffusion of nickel controlling the oxidation growth mechanism, and the content of CeO2 has little influence on the oxidation. 展开更多
关键词 codeposition nanocomposite coating oxidation reactive-element effect
下载PDF
High temperature oxidation resistance and microstructure change of aluminized coating on copper substrate 被引量:5
19
作者 王红星 张炎 +1 位作者 成家林 李玉山 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第1期184-190,共7页
The outermost coating with single phase Ni2Al3 was obtained on copper surface by electrodepositing nickel followed by slurry pack aluminizing at 800 °C for 12 h. The oxidation resistance and microstructure of the... The outermost coating with single phase Ni2Al3 was obtained on copper surface by electrodepositing nickel followed by slurry pack aluminizing at 800 °C for 12 h. The oxidation resistance and microstructure of the coating oxidized in ambient air at 1000 °C for 25-250 h were investigated using SEM, X-ray diffraction and optical microscope methods. The results show that the copper with single phase Ni2Al3 coating possesses the best high temperature oxidation resistance, and the mass gain of the coating is 1/15 that of pure copper and 1/2 that of nickel coating, respectively. The specimen surface after being oxidized for 25 h still comprises Ni2Al3 phase. However, when the time of oxidizing treatment increases to 50 h, the Ni Al phase is formed. It is also found that the Ni2Al3 phase completely turns into Ni Al phase after oxidizing treatment for 100 h and above. The Ni Al coating shows excellent high temperature oxidation resistance when oxidation time is 250 h. 展开更多
关键词 COPPER Ni2Al3 coating high temperature oxidation resistance NiAl phase pack aluminizing
下载PDF
Microstructure and high temperature oxidation resistance of Si-Y co-deposition coatings prepared on TiAl alloy by pack cementation process 被引量:6
20
作者 李涌泉 谢发勤 吴向清 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第3期803-810,共8页
In order to improve the high temperature oxidation resistance of TiAl alloy, Y modified silicide coatings were prepared by pack cementation process at 1030, 1080 and 1130 °C, respectively, for 5 h. The microstruc... In order to improve the high temperature oxidation resistance of TiAl alloy, Y modified silicide coatings were prepared by pack cementation process at 1030, 1080 and 1130 °C, respectively, for 5 h. The microstructures, phase constitutions and oxidation behavior of these coatings were studied. The results show that the coating prepared by co-depositing Si?Y at 1080 °C for 5 h has a multiple layer structure: a superficial zone consisting of Al-rich (Ti,Nb)5Si4 and (Ti,Nb)5Si3, an out layer consisting of (Ti,Nb)Si2, a middle layer consisting of (Ti,Nb)5Si4 and (Ti,Nb)5Si3, and aγ-TiAl inner layer. Co-deposition temperature imposes strong influences on the coating structure. The coating prepared by Si?Y co-depositing at 1080 °C for 5 h shows relatively good oxidation resistance at 1000 °C in air, and the oxidation rate constant of the coating is about two orders of magnitude lower than that of the bare TiAl alloy. 展开更多
关键词 TiAl alloy Si-Y co-deposition coating MICROSTRUCTURE high temperature oxidation resistance pack cementation process
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部