Glutathione peroxidase, the first example of selenoproteins identified in mammals, was subjected to force field calculations and molecular dynamics in order to enable a clearer comprehension of enzymatic selenium cata...Glutathione peroxidase, the first example of selenoproteins identified in mammals, was subjected to force field calculations and molecular dynamics in order to enable a clearer comprehension of enzymatic selenium catalysis. Starting from the established X-ray structure of bovine GPX, all kinetically defined intermediates and enzyme substrate complexes were modelled. The models thus obtained support the hypothesis that the essential steps of the catalysis are three distinct redox changes of the active site selenium which, in the ground state, presents itself at the surface of selenoperoxidases as the center of a characteristic triad built by selenocysteine, glutarnine and tryptophan. In GPX, four arginine residues and a lysine residue provide an electrostatic architecture which, in each reductive step, directs the donor substrate GSH towards the catalytic center in such a way that 1ts sulfhydryl group must react with the selenium moiety. To this end, different equally efficient modes of substrate binding appear possible. The models are consistent with substrate specificity data, kinetic pattern and other functional characteristics of the enzyme. Comparison of molecular models of GPX with those of other members of the GPX superfamily reveals that the cosubstrate binding mechanisrns are unique for the classical type of cytosolic glutathione peroxidases but cannot operate e. g. in plasma GPX and phospholipid hydroperoxide GPX. The structural differences between the selenoperoxidases, shown to be relevant to their specificities, are discussed in terms of functional diversification within the GPX superfamily展开更多
Catalytic cracking experiments of FCC cycle oil were carried out in a fixed fluidized bed reactor. Effects of reac- tion conditions, such as temperature, catalyst to oil ratio and weight hourly space velocity, were in...Catalytic cracking experiments of FCC cycle oil were carried out in a fixed fluidized bed reactor. Effects of reac- tion conditions, such as temperature, catalyst to oil ratio and weight hourly space velocity, were investigated. Hydrocarbon composition of gasoline was analyzed by gas chromatograph. Experimental results showed that conversion of cycle oil was low on account of its poor crackability performance, and the effect of reaction conditions on gasoline yield was obvi- ous. The paraffin content was very high in gasoline. Based on the experimental yields under different reaction conditions, a model for prediction of gasoline and diesel yields was established by radial basis function neural network (RBFNN). In the model, the product yield was viewed as function of reaction conditions. Particle swarm optimization (PSO) algorithm with global search capability was used to obtain optimal conditions for a highest yield of light oil. The results showed that the yield of gasoline and diesel predicted by RBF neural network agreed well with the experimental values. The optimized reac- tion conditions were obtained at a reaction temperature of around 520 ~C, a catalyst to oil ratio of 7.4 and a space velocity of 8 h~. The predicted total yield of gasoline and diesel reached 42.2% under optimized conditions.展开更多
After analysing the disadvantages of the traditional residue hydrotreating-catalytic cracking combination process, RIPP has proposed a bi-directional combination technology integrating residue hydrotreating with catal...After analysing the disadvantages of the traditional residue hydrotreating-catalytic cracking combination process, RIPP has proposed a bi-directional combination technology integrating residue hydrotreating with catalytic cracking called RICP which does not further recycles the FCC heavy cycle oil (HCO) inside the FCC unit and delivers HCO to the residue hydrotreating unit as a diluting oil for the residue that is concurrently subjected to hydrotreating prior to being used as the FCC feed oil. The RICP technology can stimulate residue hydrotreating reactions through utilization of HCO along with an in- creased yield of FCC light distillate, resulting in enhanced petroleum utilization and economic benefits of the refinery.展开更多
Increasing gasoline production in FCC unit can improve the utilization efficiency of petroleum resources and gain economic benefit.This paper discusses the technical principles for increasing FCC gasoline yield from t...Increasing gasoline production in FCC unit can improve the utilization efficiency of petroleum resources and gain economic benefit.This paper discusses the technical principles for increasing FCC gasoline yield from the aspects of feedstock properties,operating conditions,LCO(light cycle oil)recycling,catalyst selection and reactor type,and illustrates the industrial application examples for maximizing gasoline production.The technical measures,such as optimizing the feedstock,properly increasing the catalyst activity and reaction temperature,recycling LCO or hydrotreated LCO,applying high gasoline yield catalyst,and adopting the two-zone riser reactor,are proposed to enhance the gasoline yield.展开更多
Ammonia plays an essential role in human production and life as a raw material for chemical fertilizers.The nitrate electroreduction to ammonia reaction(NO_(3)RR)has garnered attention due to its advantages over the H...Ammonia plays an essential role in human production and life as a raw material for chemical fertilizers.The nitrate electroreduction to ammonia reaction(NO_(3)RR)has garnered attention due to its advantages over the Haber-Bosch process and electrochemical nitrogen reduction reaction.Therefore,it represents a promising approach to safeguard the ecological environment by enabling the cycling of nitrogen species.This review begins by discussing the theoretical insights of the NO_(3)RR.It then summarizes recent advances in catalyst design and construction strategies,including alloying,structure engineering,surface engineering,and heterostructure engineering.Finally,the challenges and prospects in this field are presented.This review aims to guide for enhancing the efficiency of electrocatalysts in the NO_(3)RR,and offers insights for converting NO_(3)-to NH_(3).展开更多
The special electronic configuration of phosphorus atoms endows organophosphorus reagents with unique chemical properties,which enable them to be used to catalyze various organic reactions,such as the Wittig reaction,...The special electronic configuration of phosphorus atoms endows organophosphorus reagents with unique chemical properties,which enable them to be used to catalyze various organic reactions,such as the Wittig reaction,Staudinger reaction,Appel reaction and Mitsunobu reaction.However,the catalytic process will be accompanied by the generation of large amounts of phosphine oxide waste,resulting in the reduction of atom utilization of the reaction,and it is difficult to separate the product.Therefore,it is essential to explore a greener and more sustainable organic synthesis route based on the catalytic cycle of phosphine oxide as a model.This paper summarizes the catalytic cycle and recycling of phosphorus with or without reducing agents and reviews the related developments in recent decades:from the addition of stoichiometric strong reducing agents,to the design of ring phosphines with specific structures,to the development of new energy inputs(electrochemistry),to the addition of a series of compounds to activate the P(V)––O double bond,driving the catalytic cycle of phosphine oxide through chemical transformation.This review also points out the development potential of this field in the future,which will promote its development and progress in a greener direction.展开更多
文摘Glutathione peroxidase, the first example of selenoproteins identified in mammals, was subjected to force field calculations and molecular dynamics in order to enable a clearer comprehension of enzymatic selenium catalysis. Starting from the established X-ray structure of bovine GPX, all kinetically defined intermediates and enzyme substrate complexes were modelled. The models thus obtained support the hypothesis that the essential steps of the catalysis are three distinct redox changes of the active site selenium which, in the ground state, presents itself at the surface of selenoperoxidases as the center of a characteristic triad built by selenocysteine, glutarnine and tryptophan. In GPX, four arginine residues and a lysine residue provide an electrostatic architecture which, in each reductive step, directs the donor substrate GSH towards the catalytic center in such a way that 1ts sulfhydryl group must react with the selenium moiety. To this end, different equally efficient modes of substrate binding appear possible. The models are consistent with substrate specificity data, kinetic pattern and other functional characteristics of the enzyme. Comparison of molecular models of GPX with those of other members of the GPX superfamily reveals that the cosubstrate binding mechanisrns are unique for the classical type of cytosolic glutathione peroxidases but cannot operate e. g. in plasma GPX and phospholipid hydroperoxide GPX. The structural differences between the selenoperoxidases, shown to be relevant to their specificities, are discussed in terms of functional diversification within the GPX superfamily
基金support of the Chinese National Program for Fundamental Research and Development(973 program)(2012CB215006)
文摘Catalytic cracking experiments of FCC cycle oil were carried out in a fixed fluidized bed reactor. Effects of reac- tion conditions, such as temperature, catalyst to oil ratio and weight hourly space velocity, were investigated. Hydrocarbon composition of gasoline was analyzed by gas chromatograph. Experimental results showed that conversion of cycle oil was low on account of its poor crackability performance, and the effect of reaction conditions on gasoline yield was obvi- ous. The paraffin content was very high in gasoline. Based on the experimental yields under different reaction conditions, a model for prediction of gasoline and diesel yields was established by radial basis function neural network (RBFNN). In the model, the product yield was viewed as function of reaction conditions. Particle swarm optimization (PSO) algorithm with global search capability was used to obtain optimal conditions for a highest yield of light oil. The results showed that the yield of gasoline and diesel predicted by RBF neural network agreed well with the experimental values. The optimized reac- tion conditions were obtained at a reaction temperature of around 520 ~C, a catalyst to oil ratio of 7.4 and a space velocity of 8 h~. The predicted total yield of gasoline and diesel reached 42.2% under optimized conditions.
文摘After analysing the disadvantages of the traditional residue hydrotreating-catalytic cracking combination process, RIPP has proposed a bi-directional combination technology integrating residue hydrotreating with catalytic cracking called RICP which does not further recycles the FCC heavy cycle oil (HCO) inside the FCC unit and delivers HCO to the residue hydrotreating unit as a diluting oil for the residue that is concurrently subjected to hydrotreating prior to being used as the FCC feed oil. The RICP technology can stimulate residue hydrotreating reactions through utilization of HCO along with an in- creased yield of FCC light distillate, resulting in enhanced petroleum utilization and economic benefits of the refinery.
文摘Increasing gasoline production in FCC unit can improve the utilization efficiency of petroleum resources and gain economic benefit.This paper discusses the technical principles for increasing FCC gasoline yield from the aspects of feedstock properties,operating conditions,LCO(light cycle oil)recycling,catalyst selection and reactor type,and illustrates the industrial application examples for maximizing gasoline production.The technical measures,such as optimizing the feedstock,properly increasing the catalyst activity and reaction temperature,recycling LCO or hydrotreated LCO,applying high gasoline yield catalyst,and adopting the two-zone riser reactor,are proposed to enhance the gasoline yield.
基金supported by the National Natural Science Foundation of China(22202151)Fundamental Research Program of Shanxi Province(202203021212243)。
文摘Ammonia plays an essential role in human production and life as a raw material for chemical fertilizers.The nitrate electroreduction to ammonia reaction(NO_(3)RR)has garnered attention due to its advantages over the Haber-Bosch process and electrochemical nitrogen reduction reaction.Therefore,it represents a promising approach to safeguard the ecological environment by enabling the cycling of nitrogen species.This review begins by discussing the theoretical insights of the NO_(3)RR.It then summarizes recent advances in catalyst design and construction strategies,including alloying,structure engineering,surface engineering,and heterostructure engineering.Finally,the challenges and prospects in this field are presented.This review aims to guide for enhancing the efficiency of electrocatalysts in the NO_(3)RR,and offers insights for converting NO_(3)-to NH_(3).
基金support of this work from the National Science Foundation of China(Nos.21602123,21702121 and 21971143)the 111 Project(No.D20015)the Foundation of Hubei Three Gorges Laboratory(No.SC213008).
文摘The special electronic configuration of phosphorus atoms endows organophosphorus reagents with unique chemical properties,which enable them to be used to catalyze various organic reactions,such as the Wittig reaction,Staudinger reaction,Appel reaction and Mitsunobu reaction.However,the catalytic process will be accompanied by the generation of large amounts of phosphine oxide waste,resulting in the reduction of atom utilization of the reaction,and it is difficult to separate the product.Therefore,it is essential to explore a greener and more sustainable organic synthesis route based on the catalytic cycle of phosphine oxide as a model.This paper summarizes the catalytic cycle and recycling of phosphorus with or without reducing agents and reviews the related developments in recent decades:from the addition of stoichiometric strong reducing agents,to the design of ring phosphines with specific structures,to the development of new energy inputs(electrochemistry),to the addition of a series of compounds to activate the P(V)––O double bond,driving the catalytic cycle of phosphine oxide through chemical transformation.This review also points out the development potential of this field in the future,which will promote its development and progress in a greener direction.