Both macro and micro-methods were introduced to study the physical and chemical properties of thermal oxidative aging of SBS (styrene-butadiene-styrene) modified asphalt. The physical properties of SBS modified asph...Both macro and micro-methods were introduced to study the physical and chemical properties of thermal oxidative aging of SBS (styrene-butadiene-styrene) modified asphalt. The physical properties of SBS modified asphalt before and after aging were analyzed by normal tests. The structure and quality variation of SBS modified asphalt during the aging process was analyzed by FTIR (Fourier transform infrared spectrum). FTIR result shows that the degeneration of SBS modified asphalt is mainly caused by oxidative reaction and rupture of C=C double bond. The molecular weight variations of asphalt function groups and SBS polymer were studied by GPC (Gel Permeation Chromatography). GPC result shows that small molecules transform into larger one in asphalt and SBS polymer molecule degrade during the aging process. SBS polymer may lose its modifying function after long time aging.展开更多
Obesity, one of the most common health problems, is associated with glucose and lipid metabolism abnormalities, increased cardiovascular risk and oxidative stressI1}. Aging is also associated with an increase in oxida...Obesity, one of the most common health problems, is associated with glucose and lipid metabolism abnormalities, increased cardiovascular risk and oxidative stressI1}. Aging is also associated with an increase in oxidative stress[2]. Considering that older adults are already at risk for oxidant stress, the additional metabolic perturbations of obesity aggravated the susceptibility to oxidant stress. Modulating age-related oxidative stress via dietary interventions could reduce free radical production and significantly improve health in aging.展开更多
Stress, inflammation and Plasminogen activator inhibitor 1 (PAI-1) are key mechanisms throughout the development of aging, constituting a crossroad in the most frequent pathologies that accompany it. Among metabolic p...Stress, inflammation and Plasminogen activator inhibitor 1 (PAI-1) are key mechanisms throughout the development of aging, constituting a crossroad in the most frequent pathologies that accompany it. Among metabolic processes, obesity, metabolic syndrome and type 2 diabetes mellitus are included and Alzheimer’s disease among the neurodegenerative processes. Stress is a mechanism of defense of the organism against exogenous and endogenous actions called stressors. In the case of low intensity stimuli, the organism responds with actions aimed at a physiological adaptation (Homeostasis). On the other hand, when a high intensity (experimental level) or chronic stimulus (oxidative stress) is repeated, structural and functional changes are observed in different organs with activation of the hypothalamus-pituitary-adrenal axis, the renin angiotensin system and the sympathetic nervous system, stimulating the production of hormones that release cytokines with proin-flammatory/antiinflammatory properties that play an important role in the previously mentioned pathologies, as well as a marked increase in PAI-1, a gene regulated by stress and by cytokines, with manifest action at the origin of thromboembolic disease, so frequent in aging. The objective of this review is to highlight the importance of the binomial stress and PAI-1 in aging and in the pathologies that accompany it. Because PAI-1 is part of the pathology and complications in aging, some authors suggest the study of PAI-1 inhibitors to achieve its physiological levels, as part of the treatment of these diseases.展开更多
Formaldehyde(HCHO)is a common indoor pollutant that is detrimental to human health.Its efficient removal has become an urgent demand to reduce the public health risk.In this work,Ag-MnO_(x)-based catalysts were prepar...Formaldehyde(HCHO)is a common indoor pollutant that is detrimental to human health.Its efficient removal has become an urgent demand to reduce the public health risk.In this work,Ag-MnO_(x)-based catalysts were prepared and activated under different atmosphere(i.e.,air,hydrogen(H_(2))and carbon monoxide(CO))for efficient oxidation of HCHO.The catalyst activated with CO(Ag/Mn-CO)displayed the highest activity among the tested samples with 90% conversion at 100℃ under a gas space velocity of 75,000 mL/(g_(cat)·hr).Complementary characterizations demonstrate that CO reduction treatment resulted in synergically regulated content of surface oxygen on support to adsorb/activate HCHO and size of Ag particle to dissociate oxygen to oxidize the adsorbed HCHO.In contrast,other catalysts lack for either abundant surface oxygen species or metallic silver with the appropriate particle size,so that the integrate activity is limited by one specific reaction step.This study contributes to elucidating the mechanisms regulating the oxidation activity of Ag-based catalysts.展开更多
To reveal the potential influence of styrene-butadiene-styrene(SBS)polymer modification on the anti-aging performance of asphalt,and its mechanism,we explored the aging characteristics of base asphalt and SBS-modified...To reveal the potential influence of styrene-butadiene-styrene(SBS)polymer modification on the anti-aging performance of asphalt,and its mechanism,we explored the aging characteristics of base asphalt and SBS-modified asphalt by reaction force field(ReaxFF)and classical molecular dynamics simulations.The results illustrate that the SBS asphalt is more susceptible to oxidative aging than the base asphalt under oxygen-deficient conditions due to the presence of unsaturated C=C bonds in the SBS polymer.In the case of sufficient oxygen,the SBS polymer inhibits the oxidation of asphalt by restraining the diffusion of asphalt molecules.Compared with the base asphalt,the SBS asphalt exhibits a higher degree of oxidation at the early stage of pavement service and a lower degree of oxidation in the long run.In addition,SBS polymer degrades into small blocks during aging,thus counteracting the hardening of aged asphalt and partially restoring its low-temperature cracking resistance.展开更多
Micro-porous TiO2 coatings co-doped with Zn^2+ and Ag nanoparticles were fabricated on Ti by microarc oxidation (MAO) for 0.5, 1.5, 2 and 4 min, respectively. The evolutions of morphology and phase component of the...Micro-porous TiO2 coatings co-doped with Zn^2+ and Ag nanoparticles were fabricated on Ti by microarc oxidation (MAO) for 0.5, 1.5, 2 and 4 min, respectively. The evolutions of morphology and phase component of the coating as a function of processing time were investigated. The microstructure of the 2 min treated coating was further observed by transmission electron microscopy to explore the coating formation mechanism. The amounts of Ag and Zn released from the 2 min treated coating were measured and the antibacterial properties of the coatings against Staphylococcus aureus (S. aureus) were also investigated. The obtained results showed that with prolonged MAO time, the contents of Ag and Zn on the coating surfaces increased. All the coatings were micro-porous with pore diameters of 1 -4μm; however, some pores were blocked by deposits on the 4 min treated coating. The 2 rain treated coating was composed of amorphous TiO2, anatase, futile, ZnO, Zn2TiO4 and homogenously distributed Ag nanoparticles. After immersion, Zn^2+, Ag^+, Ti^2+ and Ca^2+ were released from the coating and with the immersion time prolonged, the accumulated concentrations of these ions increased. After immersion for 36 weeks, the accumulated Zn2. and Ag^+ concentrations were 6.88 and 0.684 ppm, respectively, which are higher than the minimal inhibitory concentration but much lower than the cytotoxic concentration. Compared with polished Ti control, the coatings co-doped with Zn^2+ and Ag nanoparticles significantly inhibited the ad- hesions of S. uureus and reduced the amounts of planktonic bacteria in culture medium, indicating that the Zn and Ag co-doped TiO2 could be a bio-adaptable coating for long-lasting anti-microbial performance.展开更多
The formation, structural and electronic properties of silicene oxides(SOs) that result from the oxidation of silicene on Ag(111) surface have been investigated in the framework of density functional theory(DFT)...The formation, structural and electronic properties of silicene oxides(SOs) that result from the oxidation of silicene on Ag(111) surface have been investigated in the framework of density functional theory(DFT).It is found that the honeycomb lattice of silicene on the Ag(111) surface changes after the oxidation. SOs are strongly hybridized with the Ag(111) surface so that they possess metallic band structures. Charge accumulation between SOs and the Ag(111) surface indicates strong chemical bonding, which dramatically affects the electronic properties of SOs. When SOs are peeled off the Ag(111) surface, however, they may become semiconductors.展开更多
基金Funded by the National Natural Science Foundation of China(Nos.50878054,51108081)
文摘Both macro and micro-methods were introduced to study the physical and chemical properties of thermal oxidative aging of SBS (styrene-butadiene-styrene) modified asphalt. The physical properties of SBS modified asphalt before and after aging were analyzed by normal tests. The structure and quality variation of SBS modified asphalt during the aging process was analyzed by FTIR (Fourier transform infrared spectrum). FTIR result shows that the degeneration of SBS modified asphalt is mainly caused by oxidative reaction and rupture of C=C double bond. The molecular weight variations of asphalt function groups and SBS polymer were studied by GPC (Gel Permeation Chromatography). GPC result shows that small molecules transform into larger one in asphalt and SBS polymer molecule degrade during the aging process. SBS polymer may lose its modifying function after long time aging.
基金supported by the French Foreign Office(International Research Extension Grant TASSILI 08MDU723)the Algerian Research Project(PNR,2011)
文摘Obesity, one of the most common health problems, is associated with glucose and lipid metabolism abnormalities, increased cardiovascular risk and oxidative stressI1}. Aging is also associated with an increase in oxidative stress[2]. Considering that older adults are already at risk for oxidant stress, the additional metabolic perturbations of obesity aggravated the susceptibility to oxidant stress. Modulating age-related oxidative stress via dietary interventions could reduce free radical production and significantly improve health in aging.
文摘Stress, inflammation and Plasminogen activator inhibitor 1 (PAI-1) are key mechanisms throughout the development of aging, constituting a crossroad in the most frequent pathologies that accompany it. Among metabolic processes, obesity, metabolic syndrome and type 2 diabetes mellitus are included and Alzheimer’s disease among the neurodegenerative processes. Stress is a mechanism of defense of the organism against exogenous and endogenous actions called stressors. In the case of low intensity stimuli, the organism responds with actions aimed at a physiological adaptation (Homeostasis). On the other hand, when a high intensity (experimental level) or chronic stimulus (oxidative stress) is repeated, structural and functional changes are observed in different organs with activation of the hypothalamus-pituitary-adrenal axis, the renin angiotensin system and the sympathetic nervous system, stimulating the production of hormones that release cytokines with proin-flammatory/antiinflammatory properties that play an important role in the previously mentioned pathologies, as well as a marked increase in PAI-1, a gene regulated by stress and by cytokines, with manifest action at the origin of thromboembolic disease, so frequent in aging. The objective of this review is to highlight the importance of the binomial stress and PAI-1 in aging and in the pathologies that accompany it. Because PAI-1 is part of the pathology and complications in aging, some authors suggest the study of PAI-1 inhibitors to achieve its physiological levels, as part of the treatment of these diseases.
基金supported by the National Natural Science Foundation of China(Nos.22025604,22106171,21936005,and 21976196)the Jinan“20 Universities”Funding Project(No.2020GXRC027)。
文摘Formaldehyde(HCHO)is a common indoor pollutant that is detrimental to human health.Its efficient removal has become an urgent demand to reduce the public health risk.In this work,Ag-MnO_(x)-based catalysts were prepared and activated under different atmosphere(i.e.,air,hydrogen(H_(2))and carbon monoxide(CO))for efficient oxidation of HCHO.The catalyst activated with CO(Ag/Mn-CO)displayed the highest activity among the tested samples with 90% conversion at 100℃ under a gas space velocity of 75,000 mL/(g_(cat)·hr).Complementary characterizations demonstrate that CO reduction treatment resulted in synergically regulated content of surface oxygen on support to adsorb/activate HCHO and size of Ag particle to dissociate oxygen to oxidize the adsorbed HCHO.In contrast,other catalysts lack for either abundant surface oxygen species or metallic silver with the appropriate particle size,so that the integrate activity is limited by one specific reaction step.This study contributes to elucidating the mechanisms regulating the oxidation activity of Ag-based catalysts.
基金the financial support of the National Natural Science Foundation of China(Grant No.51878162)the Scientific Research Foundation of Graduate School of South-east University(No.YBPY2043)the Innovation and Development Foundation of Tibet Tianlu Co.,Ltd.(No.XZ 2019 TL-G-01).
文摘To reveal the potential influence of styrene-butadiene-styrene(SBS)polymer modification on the anti-aging performance of asphalt,and its mechanism,we explored the aging characteristics of base asphalt and SBS-modified asphalt by reaction force field(ReaxFF)and classical molecular dynamics simulations.The results illustrate that the SBS asphalt is more susceptible to oxidative aging than the base asphalt under oxygen-deficient conditions due to the presence of unsaturated C=C bonds in the SBS polymer.In the case of sufficient oxygen,the SBS polymer inhibits the oxidation of asphalt by restraining the diffusion of asphalt molecules.Compared with the base asphalt,the SBS asphalt exhibits a higher degree of oxidation at the early stage of pavement service and a lower degree of oxidation in the long run.In addition,SBS polymer degrades into small blocks during aging,thus counteracting the hardening of aged asphalt and partially restoring its low-temperature cracking resistance.
基金the financial support of the National Program on Key Basic Research Project of China ("973 Program", Grant No. 2012CB619103)the National Natural Science Foundation of China (Grant Nos. 51201129, 51371137, 51571158)+2 种基金the Natural Science Foundation of Shanxi Province (Grant No. 2015JQ5130)the Open Research Fund of State Key Laboratory of BioelectronicsSoutheast University and the Fundamental Research Funds for the Central Universities
文摘Micro-porous TiO2 coatings co-doped with Zn^2+ and Ag nanoparticles were fabricated on Ti by microarc oxidation (MAO) for 0.5, 1.5, 2 and 4 min, respectively. The evolutions of morphology and phase component of the coating as a function of processing time were investigated. The microstructure of the 2 min treated coating was further observed by transmission electron microscopy to explore the coating formation mechanism. The amounts of Ag and Zn released from the 2 min treated coating were measured and the antibacterial properties of the coatings against Staphylococcus aureus (S. aureus) were also investigated. The obtained results showed that with prolonged MAO time, the contents of Ag and Zn on the coating surfaces increased. All the coatings were micro-porous with pore diameters of 1 -4μm; however, some pores were blocked by deposits on the 4 min treated coating. The 2 rain treated coating was composed of amorphous TiO2, anatase, futile, ZnO, Zn2TiO4 and homogenously distributed Ag nanoparticles. After immersion, Zn^2+, Ag^+, Ti^2+ and Ca^2+ were released from the coating and with the immersion time prolonged, the accumulated concentrations of these ions increased. After immersion for 36 weeks, the accumulated Zn2. and Ag^+ concentrations were 6.88 and 0.684 ppm, respectively, which are higher than the minimal inhibitory concentration but much lower than the cytotoxic concentration. Compared with polished Ti control, the coatings co-doped with Zn^2+ and Ag nanoparticles significantly inhibited the ad- hesions of S. uureus and reduced the amounts of planktonic bacteria in culture medium, indicating that the Zn and Ag co-doped TiO2 could be a bio-adaptable coating for long-lasting anti-microbial performance.
基金supported by the National Basic Research Program of China (Grant No. 2013CB632101)the National Natural Science Foundation of China (Grant Nos. 61222404 and 61474097)the Program of the Ministry of Education of China for Innovative Research Teams in Universities (Grant No. IRT13R54)
文摘The formation, structural and electronic properties of silicene oxides(SOs) that result from the oxidation of silicene on Ag(111) surface have been investigated in the framework of density functional theory(DFT).It is found that the honeycomb lattice of silicene on the Ag(111) surface changes after the oxidation. SOs are strongly hybridized with the Ag(111) surface so that they possess metallic band structures. Charge accumulation between SOs and the Ag(111) surface indicates strong chemical bonding, which dramatically affects the electronic properties of SOs. When SOs are peeled off the Ag(111) surface, however, they may become semiconductors.