The Fe3O4 films were prepared by in-situ oxidative hydrolysis on chitosan. The structures and characteristics of the prepared Fe3O4 films were investigated by X-ray diffractometry (XRD), scanning electron microscopy...The Fe3O4 films were prepared by in-situ oxidative hydrolysis on chitosan. The structures and characteristics of the prepared Fe3O4 films were investigated by X-ray diffractometry (XRD), scanning electron microscopy (SEM), atom force microscopy (AFM), vibrating sample magnetometry (VSM) and thermogravimetric-differentia thermal analysis (TG-DTA). The results show that, (1) the as-synthesized Fe3O4 films are pure Fe3O4 with cubic inverse spinel structure; (2) the network structured film can be obtained at lower temperature, and the compact particle film at higher temperature; (3) the prepared Fe3O4 films are super-paramagnetic, and the saturation magnetization is improved with increasing the reaction temperature, which is 49.03 emu/g at 80℃; (4) the temperature of phase transformation from Fe3O4 to a-Fe2O3 is about 495℃. Besides, the formation mechanism of Fe3O4 film was also proposed.展开更多
A novel and convenient hydrolysis and oxidation method was first used in preparation of carbon contained Y2O3 phosphor powders. The alloy was hydrolyzed in deionized water and the obtained Y(OH)3 powders were heat t...A novel and convenient hydrolysis and oxidation method was first used in preparation of carbon contained Y2O3 phosphor powders. The alloy was hydrolyzed in deionized water and the obtained Y(OH)3 powders were heat treated in air atmosphere. The final products - Y2O3 powders were micron clusters which were aggregated by hundreds of nanoparticles with the size of about 5 nm. The chemical composition, structural and morphological features of the samples were characterized by means of X-ray powder diffraction (XRD) analysis, transmission electron microscopy (TEM), Fourier-transform infrared (FT-IR) spectra, X-ray photoelectron spectra (XPS) and carbon sulfur analyzer. The obtained powders showed good bluish-white photoluminescence (PL) emissions (ranging from 430 to 600 nm, peaking at 468 nm and 578 nm) under the xenon light excitation. The luminescent mechanism was ascribed to the carbon impurities in the Y2O3 host.展开更多
High solid content CO_(2)-based cationic waterborne polyurethanes(CWPUs)were prepared using CO_(2)-polyols as soft segment and Nmethyl diethanolamine(MDEA)as hydrophilic group.The resulting stable aqueous dispersion d...High solid content CO_(2)-based cationic waterborne polyurethanes(CWPUs)were prepared using CO_(2)-polyols as soft segment and Nmethyl diethanolamine(MDEA)as hydrophilic group.The resulting stable aqueous dispersion displayed a high solid content of 52%with a low MDEA loading of 3.52 wt%.This novel structural CWPU can provide excellent adhesive strength,whose T-peel strength could reach 173.48N/5cm,20%higher than that of ester-based cationic waterborne polyurethane(87.55 N/5cm).The CO_(2)-based CWPU film showed only 2 wt%swelling percentage after 240 min immersion in water,and no change was observed during its immersion in 5 wt%sodium hydroxide solution.The tensile strength of CO_(2)-WPUs dropped slowly to 91.2%after 480 min immersion in a 5 wt%sodium hydroxide solution,whereas that of esterbased CWPUs dropped quickly to 32%after 240 min and their mechanical properties were lost after 360 min immersion.Meanwhile,the retention of the tensile strength of the CO_(2)-CWPUs was 81.5%even after 720 min immersion in 10 wt%H_(2)O_(2) solution,while it was only ca.38%for the ester-based CWPUs.These results indicated that the cationic CO_(2)-based CWPU may be promising waterborne adhesive with outstanding ageing resistance due to its synergistic effect from carbonate and ether groups of CO_(2)-polyol structure.展开更多
基金This work was supported by the National Natural Science Foundation of China under grant No. 50271046.
文摘The Fe3O4 films were prepared by in-situ oxidative hydrolysis on chitosan. The structures and characteristics of the prepared Fe3O4 films were investigated by X-ray diffractometry (XRD), scanning electron microscopy (SEM), atom force microscopy (AFM), vibrating sample magnetometry (VSM) and thermogravimetric-differentia thermal analysis (TG-DTA). The results show that, (1) the as-synthesized Fe3O4 films are pure Fe3O4 with cubic inverse spinel structure; (2) the network structured film can be obtained at lower temperature, and the compact particle film at higher temperature; (3) the prepared Fe3O4 films are super-paramagnetic, and the saturation magnetization is improved with increasing the reaction temperature, which is 49.03 emu/g at 80℃; (4) the temperature of phase transformation from Fe3O4 to a-Fe2O3 is about 495℃. Besides, the formation mechanism of Fe3O4 film was also proposed.
基金Project supported by Shanghai Science and Technology Commission(11nm0501600)
文摘A novel and convenient hydrolysis and oxidation method was first used in preparation of carbon contained Y2O3 phosphor powders. The alloy was hydrolyzed in deionized water and the obtained Y(OH)3 powders were heat treated in air atmosphere. The final products - Y2O3 powders were micron clusters which were aggregated by hundreds of nanoparticles with the size of about 5 nm. The chemical composition, structural and morphological features of the samples were characterized by means of X-ray powder diffraction (XRD) analysis, transmission electron microscopy (TEM), Fourier-transform infrared (FT-IR) spectra, X-ray photoelectron spectra (XPS) and carbon sulfur analyzer. The obtained powders showed good bluish-white photoluminescence (PL) emissions (ranging from 430 to 600 nm, peaking at 468 nm and 578 nm) under the xenon light excitation. The luminescent mechanism was ascribed to the carbon impurities in the Y2O3 host.
基金financially supported by the National Natural Science Foundation of China(No.32071686)。
文摘High solid content CO_(2)-based cationic waterborne polyurethanes(CWPUs)were prepared using CO_(2)-polyols as soft segment and Nmethyl diethanolamine(MDEA)as hydrophilic group.The resulting stable aqueous dispersion displayed a high solid content of 52%with a low MDEA loading of 3.52 wt%.This novel structural CWPU can provide excellent adhesive strength,whose T-peel strength could reach 173.48N/5cm,20%higher than that of ester-based cationic waterborne polyurethane(87.55 N/5cm).The CO_(2)-based CWPU film showed only 2 wt%swelling percentage after 240 min immersion in water,and no change was observed during its immersion in 5 wt%sodium hydroxide solution.The tensile strength of CO_(2)-WPUs dropped slowly to 91.2%after 480 min immersion in a 5 wt%sodium hydroxide solution,whereas that of esterbased CWPUs dropped quickly to 32%after 240 min and their mechanical properties were lost after 360 min immersion.Meanwhile,the retention of the tensile strength of the CO_(2)-CWPUs was 81.5%even after 720 min immersion in 10 wt%H_(2)O_(2) solution,while it was only ca.38%for the ester-based CWPUs.These results indicated that the cationic CO_(2)-based CWPU may be promising waterborne adhesive with outstanding ageing resistance due to its synergistic effect from carbonate and ether groups of CO_(2)-polyol structure.