期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Regulation of the pentose phosphate pathway in cancer 被引量:21
1
作者 Peng Jiang Wenjing Du Mian Wu 《Protein & Cell》 SCIE CAS CSCD 2014年第8期592-602,共11页
Energy metabolism is significantly reprogrammed in many human cancers, and these alterations confer many advantages to cancer cells, including the pro- motion of biosynthesis, ATP generation, detoxification and suppor... Energy metabolism is significantly reprogrammed in many human cancers, and these alterations confer many advantages to cancer cells, including the pro- motion of biosynthesis, ATP generation, detoxification and support of rapid proliferation. The pentose phos- phate pathway (PPP) is a major pathway for glucose catabolism. The PPP directs glucose flux to its oxi- dative branch and produces a reduced form of nico- tinamide adenine dinucleotide phosphate (NADPH), an essential reductant in anabolic processes. It has become clear that the PPP plays a critical role in regulating cancer cell growth by supplying cells with not only ribose-5-phosphate but also NADPH for detoxification of intracellular reactive oxygen species, reductive biosynthesis and ribose biogenesis. Thus, alteration of the PPP contributes directly to cell pro- liferation, survival and senescence. Furthermore, recent studies have shown that the PPP is regulated oncogenically and/or metabolically by numerous fac- tors, including tumor suppressors, oncoproteins and intracellular metabolites. Dysregulation of PPP flux dramatically impacts cancer growth and survival. Therefore, a better understanding of how the PPP is reprogrammed and the mechanism underlying the balance between glycolysis and PPP flux in cancer will be valuable in developing therapeutic strategies targeting this pathway. 展开更多
关键词 pentose phosphate pathway ppp)G6PD NADPH glucose metabolism CANCER CELLPROLIFERATION
原文传递
6-Phosphogluconate dehydrogenase 2 bridges the OPP and shikimate pathways to enhance aromatic amino acid production in plants
2
作者 Qian Tang Yuxin Huang +11 位作者 Zhuanglin Shen Linhui Sun Yang Gu Huiqing He Yanhong Chen Jiahai Zhou Limin Zhang Cuihuan Zhao Shisong Ma Yunhai Li Jie Wu Qiao Zhao 《Science China(Life Sciences)》 SCIE CAS CSCD 2024年第11期2488-2498,共11页
The oxidative pentose phosphate(OPP)pathway provides metabolic intermediates for the shikimate pathway and directs carbon flow to the biosynthesis of aromatic amino acids(AAAs),which serve as basic protein building bl... The oxidative pentose phosphate(OPP)pathway provides metabolic intermediates for the shikimate pathway and directs carbon flow to the biosynthesis of aromatic amino acids(AAAs),which serve as basic protein building blocks and precursors of numerous metabolites essential for plant growth.However,genetic evidence linking the two pathways is largely unclear.In this study,we identified 6-phosphogluconate dehydrogenase 2(PGD2),the rate-limiting enzyme of the cytosolic OPP pathway,through suppressor screening of arogenate dehydrogenase 2(adh2)in Arabidopsis.Our data indicated that a single amino acid substitution at position 63(glutamic acid to lysine)of PGD2 enhanced its enzyme activity by facilitating the dissociation of products from the active site of PGD2,thus increasing the accumulation of AAAs and partially restoring the defective phenotype of adh2.Phylogenetic analysis indicated that the point mutation occurred in a well-conserved amino acid residue.Plants with different amino acids at this conserved site of PGDs confer diverse catalytic activities,thus exhibiting distinct AAAs producing capability.These findings uncover the genetic link between the OPP pathway and AAAs biosynthesis through PGD2.The gain-of-function point mutation of PGD2 identified here could be considered as a potential engineering target to alter the metabolic flux for the production of AAAs and downstream compounds. 展开更多
关键词 plant metabolism aromatic amino acids oxidative pentose phosphate pathway shikimate pathway 6-phosphogluconate dehydrogenase
原文传递
二氢硫辛酰转乙酰基酶通过乙酰化磷酸葡糖酸脱氢酶促进核酸合成 被引量:3
3
作者 孙明明 乔亚亚 +2 位作者 李垒垒 山长亮 张帅 《中国生物化学与分子生物学报》 CAS CSCD 北大核心 2021年第3期339-346,共8页
丙酮酸脱氢酶复合物(pyruvate dehydrogenase complex,PDC)是位于线粒体内的多酶复合物,催化丙酮酸不可逆地氧化脱羧转为乙酰辅酶A,二氢硫辛酰转乙酰基酶(dihydrolipoyl acetyltransferase,DLAT)是PDC的1个亚基。PDC在细胞线粒体呼吸中... 丙酮酸脱氢酶复合物(pyruvate dehydrogenase complex,PDC)是位于线粒体内的多酶复合物,催化丙酮酸不可逆地氧化脱羧转为乙酰辅酶A,二氢硫辛酰转乙酰基酶(dihydrolipoyl acetyltransferase,DLAT)是PDC的1个亚基。PDC在细胞线粒体呼吸中发挥关键作用。但是DLAT在核酸合成中的作用仍不清楚。在本研究中,首先利用GEO数据库、Oncomine数据库和人类蛋白质图谱数据库分析发现,DLAT在肺癌组织中的表达明显高于癌旁组织(P=0.0002),并且高表达DLAT的病人有较短的生存期(HR=1.47,logrank P=4e-09)。因此推测,DLAT在肿瘤生长中发挥关键作用。进而本文构建了敲低DLAT的肺癌细胞系,并用免疫印迹结果验证了DLAT敲低效果。进一步的研究发现,敲低DLAT将降低戊糖磷酸途径第3个酶磷酸葡糖酸脱氢酶(6-phosphogluconate dehydrogenase,6PGD)的乙酰化水平,进而降低6PGD酶活性,从而导致核酸合成受阻(P<0.01),最终抑制肺癌细胞增殖(P<0.01)。机制研究发现,DLAT通过乙酰化6PGD而使其酶活性增强,进而提高核酸合成,从而达到促进肺癌细胞增殖的作用。综上所述,本研究为DLAT作为潜在的靶点,为药物开发和临床肺癌的治疗提供了新的思路。 展开更多
关键词 线粒体 二氢硫辛酰转乙酰基酶 磷酸葡糖酸脱氢酶 戊糖磷酸途径
下载PDF
Glycolytic Shunts Replenish the Calvin-Benson-Bassham Cycle as Anaplerotic Reactions in Cyanobacteria
4
作者 Alexander Makowka Lars Nichelmann +4 位作者 Dennis Schulze Katharina Spengler Christoph Wittmann Karl Forchhammer Kirstin Gutekunst 《Molecular Plant》 SCIE CAS CSCD 2020年第3期471-482,共12页
The recent discovery of the Entner-Doudoroff(ED)pathway as a third glycolytic route beside Embden-Meyerhof-Parnas(EMP)and oxidative pentose phosphate(OPP)pathway in oxygenic photoautotrophs requires a revision of thei... The recent discovery of the Entner-Doudoroff(ED)pathway as a third glycolytic route beside Embden-Meyerhof-Parnas(EMP)and oxidative pentose phosphate(OPP)pathway in oxygenic photoautotrophs requires a revision of their central carbohydrate metabolism.In this study,unexpectedly,we observed that deletion of the ED pathway alone,and even more pronounced in combination with other glycolytic routes,diminished photoautotrophic growth in continuous light in the cyanobacterium Synechocystis sp.PCC 6803.Furthermore,we found that the ED pathway is required for optimal glycogen catabolism in parallel to an operating Calvin-Benson-Bassham(CBB)cycle.It is counter-intuitive that glycolytic routes,which are a reverse to the CBB cycle and do not provide any additional biosynthetic intermediates,are important under photoautotrophic conditions.However,observations on the ability to reactivate an arrested CBB cycle revealed that they form glycolytic shunts that tap the cellular carbohydrate reservoir to replenish the cycle.Taken together,our results suggest that the classical view of the CBB cycle as an autocatalytic,completely autonomous cycle that exclusively relies on its own enzymes and C02 fixation to regenerate ribulose-1,5-bisphosphate for Rubisco is an oversimplification.We propose that in common with other known autocatalytic cycles,the CBB cycle likewise relies on anaplerotic reactions to compensate for the depletion of intermediates,particularly in transition states and under fluctuating light conditions that are common in nature. 展开更多
关键词 central carbohydrate metabolism Calvin-Benson-Bassham cycle Entner-Doudoroff pathway oxidative pentose phosphate pathway Embden-Meyerhof-Parnas pathway CYANOBACTERIA
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部