Lithium recovery from spent lithium-ion batteries(LIBs)have attracted extensive attention due to the skyrocketing price of lithium.The medium-temperature carbon reduction roasting was proposed to preferential selectiv...Lithium recovery from spent lithium-ion batteries(LIBs)have attracted extensive attention due to the skyrocketing price of lithium.The medium-temperature carbon reduction roasting was proposed to preferential selective extraction of lithium from spent Li-CoO_(2)(LCO)cathodes to overcome the incomplete recovery and loss of lithium during the recycling process.The LCO layered structure was destroyed and lithium was completely converted into water-soluble Li2CO_(3)under a suitable temperature to control the reduced state of the cobalt oxide.The Co metal agglomerates generated during medium-temperature carbon reduction roasting were broken by wet grinding and ultrasonic crushing to release the entrained lithium.The results showed that 99.10%of the whole lithium could be recovered as Li2CO_(3)with a purity of 99.55%.This work provided a new perspective on the preferentially selective extraction of lithium from spent lithium batteries.展开更多
Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)...Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)FeO_(3-δ) perovskites as highly-active catalysts for LT-SOFCs.Sm doping can significantly enhance the electrocata lytic activity and chemical stability of cathode.At 600℃,Bi_(0.675)Sm_(0.025)Sr_(0.3)FeO_(3-δ)(BSSF25) cathode has been found to be the optimum composition with a polarization resistance of 0.098 Ω cm^2,which is only around 22.8% of Bi_(0.7)Sr_(0.3)FeO_(3-δ)(BSF).A full cell utilizing BSSF25 displays an exceptional output density of 790 mW cm^(-2),which can operate continuously over100 h without obvious degradation.The remarkable electrochemical performance observed can be attributed to the improved O_(2) transport kinetics,superior surface oxygen adsorption capacity,as well as O_(2)p band centers in close proximity to the Fermi level.Moreover,larger average bonding energy(ABE) and the presence of highly acidic Bi,Sm,and Fe ions restrict the adsorption of CO_(2) on the cathode surface,resulting in excellent CO_(2) resistivity.This work provides valuable guidance for systematic design of efficient and durable catalysts for LT-SOFCs.展开更多
Garnet-type Li_7La_(3)Zr_(2)O_(12)(LLZO) has high ionic conductivity and good compatibility with lithium metal.High-temperature processing has been proven an effective method to decrease the interface resistance of ca...Garnet-type Li_7La_(3)Zr_(2)O_(12)(LLZO) has high ionic conductivity and good compatibility with lithium metal.High-temperature processing has been proven an effective method to decrease the interface resistance of cathodeILLZO.However,its application is still hindered by the interlayer co-diffusion with the cathode and high sintering temperature(>1200℃).In this work,a new garnet-type composite solid-state electrolyte(SSE) Li_(6.54)La_(2.96)Ba_(0.04)Zr_(1.5)Nb_(0.5)O_(12)-LiCoO_(2)(LLBZNO-LCO) is firstly proposed to improve the chemical stability and electrochemical properties of garnet with high-temperature processing.Small doses of LCO(3%) can significantly decrease the LCOISSE interface resistance from 121.2 to 10.1 Ω cm~2,while the sintering temperature of garnet-type LLBZNO decreases from 1230 to 1000℃.The all-solid-state battery based on the sintered LLBZNO-LCO SSE exhibits excellent cycling stability.Our approach achieves an enhanced LCOISSE interface and an improved sintering activity of garnet SSE,which provides a new strategy for optimizing the comprehensive performance of garnet SSE.展开更多
Stro ntium-doped lanthanum ferrite(LSF)is a potential ceramic cathode for direct CO_(2) electrolysis in solid oxide electrolysis cells(SOECs),but its application is limited by insufficient catalytic activity and stabi...Stro ntium-doped lanthanum ferrite(LSF)is a potential ceramic cathode for direct CO_(2) electrolysis in solid oxide electrolysis cells(SOECs),but its application is limited by insufficient catalytic activity and stability in CO_(2)-containing atmospheres.Herein,a novel strategy is proposed to enhance the electrolytic performance as well as chemical stability,achieved by doping F into the O-site of the perovskite LSF.Doping F does not change the phase structure but reduces the cell volume and improves the chemical stability in a CO_(2)-rich atmosphere.Importantly,F doping favors oxygen vacancy formation,increases oxygen vacancy concentration,and enhances the CO_(2) adsorption capability.Meanwhile,doping with F greatly improves the kinetics of the CO_(2) reduction reaction.For example,kchem increases by 78%from3.49×10^(-4) cm s^(-1) to 6.24×10^(-4) cm s^(-1),and Dchem doubles from 4.68×10^(-5) cm^(2) s^(-1) to 9.45×10^(-5)cm^(2) s^(-1).Consequently,doping F significantly increases the electrochemical performance,such as reducing R_(p) by 52.2%from 0.226Ωcm^(2) to 0.108Ωcm^(2) at 800℃.As a result,the single cell with the Fcontaining cathode exhibits an extremely high current density of 2.58 A cm^(-2) at 800℃and 1.5 V,as well as excellent durability over 200 h for direct CO_(2) electrolysis in SOECs.展开更多
Mn-based layered oxides are among the most promising cathode materials for sodium-ion batteries owing to the advantages of abundance,environmenta friendliness,low cost and high specific capacity.P2 and O'3 are two...Mn-based layered oxides are among the most promising cathode materials for sodium-ion batteries owing to the advantages of abundance,environmenta friendliness,low cost and high specific capacity.P2 and O'3 are two representative structures of Mn-based layered oxides.However,the P2 structure containing insufficien Na generally exhibits low initial charge capacity,while O'3structure with sufficient Na delivers high initial charge capacity but poor cycle stability.This study prepared a multitude of Na_(x)MnO_(2)(x=0.7,0.8,0.9)cathode materials with varying P2/O'3 ratios and further investigated their electrochemical performances.The optimized Na_(0.8)MnO_(2) comprising 69.9 wt%O'3 and 30.1 wt%P2 phase,exhibited relatively balanced specific capacity,Coulombic efficiency and cycle stability.Specifically,it achieved a high specific capacity of 128.9 mAh·g^(-1) with an initia Coulombic efficiency of 98.2%in half-cell configuration The Na_(0.8)MnO_(2)//hard carbon full cell also achieved a high specific capacity of 126.7 mAh·g^(-1) with an initia Coulombic efficiency of 98.9%.Moreover,the capacity fading mechanism was revealed by combining in-situ and ex-situ X-ray diffraction.The findings of this study provide theoretical guidance for further modification design of Mnbased layered cathodes.展开更多
Promoting the oxygen reduction reaction(ORR)is critical for commercialization of intermediate-temperature solid oxide fuel cells(IT-SOFCs),where Sr_(2)Fe_(1.5)Mo_(0.5)O_(6)−δ(SFM)is a promising cathode by working as ...Promoting the oxygen reduction reaction(ORR)is critical for commercialization of intermediate-temperature solid oxide fuel cells(IT-SOFCs),where Sr_(2)Fe_(1.5)Mo_(0.5)O_(6)−δ(SFM)is a promising cathode by working as a mixed ionic and electronic conductor.In this work,doping of In^(3+)greatly increases the oxygen vacancy concentration and the content of adsorbed oxygen species in Sr_(2)Fe_(1.5)Mo_(0.5−x)InxO_(6−δ)(SFMInx),and thus effectively promotes the ORR performance.As a typical example,SFMIn_(0.1)reduces the polarization resistance(R_(p))from 0.089 to 0.046Ω∙cm^(2)at 800°C,which is superior to those doped with other metal elements.In addition,SFMIn0.1 increases the peak power density from 0.92 to 1.47 W∙cm^(−2)at 800°C with humidified H_(2)as the fuel,indicating that In3+doping at the Mo site can effectively improve the performance of SOFC cathode material.展开更多
A terylene membrane which kept pH〉12 in cathode compartment was used to construct a divided cell with a carbon/polytetrafluoroethylene(C/PTFE) O2-fed cathode. The concentrations of hydrogen peroxide (H2O2) and hy...A terylene membrane which kept pH〉12 in cathode compartment was used to construct a divided cell with a carbon/polytetrafluoroethylene(C/PTFE) O2-fed cathode. The concentrations of hydrogen peroxide (H2O2) and hydroxyl radical (HO^-)in the catholyte were 8.3 mg/L and 2.15 μmol/L, respectivel.y, which were determined by permanganate titration, electron spin resonance (ESR) spectrum and the fluorescence spectra. ;The efficiency of the removal of phenol achieved 100% as a result of these two kinds of stronger oxidizer.展开更多
Traditional O3-type Li-rich layered materials are attractive with ultra-high specific capacities,but suffering from inherent problems of voltage hysteresis and poor cycle performance.As an alternative,O2-type material...Traditional O3-type Li-rich layered materials are attractive with ultra-high specific capacities,but suffering from inherent problems of voltage hysteresis and poor cycle performance.As an alternative,O2-type materials show the potential to improve the oxygen redox reversibility and structural stability.However,their structure-performance relationship is still unclear.Here,we investigate the correlation between the Li component and dynamic chemical reversibility of O2-type Li-rich materials.By exploring the formation mechanism of a series of materials prepared by Na/Li exchange,we reveal that insufficient Li leads to an incomplete replacement,and the residual Na in the Li-layer would hinder the fast diffusion of Li^(+).Moreover,excessive Li induces the extraction of interlayer Li during the melting chemical reaction stage,resulting in a reduction in the valence of Mn,which leads to a severe Jahn-Teller effect.Structural detection confirms that the regulation of Li can improve the cycle stability of Li-rich materials and suppress the trend of voltage fading.The reversible phase evolution observed in in-situ X-ray diffraction confirms the excellent structural stability of the optimized material,which is conducive to capacity retention.This work highlights the significance of modulating dynamic electrochemical performance through the intrinsic structure.展开更多
Microwave synthesis method was applied to the fast preparation of LiCoO2. The structure of the synthesized oxides was analyzed by using X-ray diffraction. Only single-phase LiCoO2 was obtained. Electrochemical behavio...Microwave synthesis method was applied to the fast preparation of LiCoO2. The structure of the synthesized oxides was analyzed by using X-ray diffraction. Only single-phase LiCoO2 was obtained. Electrochemical behaviors of LiCoO2 were investigated by charge-discharge cycling properties in the voltage range of 3.004.35 V((vs Li).) The results show that the prepared LiCoO2 powders calcinated at 900 ℃ for 120 min exhibit an initial charge and discharge capacity of 168 and 162 mA·h·g-1 at 0.1C current rate, respectively, as compared to 159 and 154 (mA·h·g-1) of LiCoO2 synthesized by conventional means. In addition, more than 95% of the capacity is retained (even) after 10 cycles. But with the increase of calcinating time, its electrochemical properties deteriorate. Compared with the conventional method, the microwave heating method is simple, fast, and with high energy efficiency.展开更多
The Na^(+)/vacancy ordering can effectively affect the electrochemical behavior of P2-type cathode material.In this work we proposed an integrated strategy by attaining a high Na content,In^(3+) doping in conjunction ...The Na^(+)/vacancy ordering can effectively affect the electrochemical behavior of P2-type cathode material.In this work we proposed an integrated strategy by attaining a high Na content,In^(3+) doping in conjunction with NaInO_(2) coating in the P2-Na_(0.75)Mn_(0.67)Ni_(0.33)O_(2) which can inhibit the sodium vacancy order,smooth the electrochemical curve,and enhance the structural stability and rate capability.A combination of X-ray diffraction analysis and DFT calculation indicate that the In(3+) ions in the Na layer serve as"pillars”to stabilize the layered structure,especially for high current density charging.The P2-Na_(0.75)Mn_(0.67)Ni_(0.33)In_(0.02)O_(2) with an impressive sodium content exhibits a remarkable reversible capacity of 109.6 mAh g^(-1),superior rate capability capacity of 79.8 mAh g^(-1)at 20 C,and 85%capacity retention after 100 cycles at 5 C.This work demonstrates an efficient approach for the comprehensive optimization of sodium ion cathode materials.展开更多
基金the Science and Technology Key Project of Anhui Province,China(No.2022e03020004).
文摘Lithium recovery from spent lithium-ion batteries(LIBs)have attracted extensive attention due to the skyrocketing price of lithium.The medium-temperature carbon reduction roasting was proposed to preferential selective extraction of lithium from spent Li-CoO_(2)(LCO)cathodes to overcome the incomplete recovery and loss of lithium during the recycling process.The LCO layered structure was destroyed and lithium was completely converted into water-soluble Li2CO_(3)under a suitable temperature to control the reduced state of the cobalt oxide.The Co metal agglomerates generated during medium-temperature carbon reduction roasting were broken by wet grinding and ultrasonic crushing to release the entrained lithium.The results showed that 99.10%of the whole lithium could be recovered as Li2CO_(3)with a purity of 99.55%.This work provided a new perspective on the preferentially selective extraction of lithium from spent lithium batteries.
基金supported by the National Natural Science Foundation of China(22279025,21773048)the Natural Science Foundation of Heilongjiang Province(LH2021A013)+1 种基金the Sichuan Science and Technology Program(2021YFSY0022)the Fundamental Research Funds for the Central Universities(2023FRFK06005,HIT.NSRIF202204)。
文摘Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)FeO_(3-δ) perovskites as highly-active catalysts for LT-SOFCs.Sm doping can significantly enhance the electrocata lytic activity and chemical stability of cathode.At 600℃,Bi_(0.675)Sm_(0.025)Sr_(0.3)FeO_(3-δ)(BSSF25) cathode has been found to be the optimum composition with a polarization resistance of 0.098 Ω cm^2,which is only around 22.8% of Bi_(0.7)Sr_(0.3)FeO_(3-δ)(BSF).A full cell utilizing BSSF25 displays an exceptional output density of 790 mW cm^(-2),which can operate continuously over100 h without obvious degradation.The remarkable electrochemical performance observed can be attributed to the improved O_(2) transport kinetics,superior surface oxygen adsorption capacity,as well as O_(2)p band centers in close proximity to the Fermi level.Moreover,larger average bonding energy(ABE) and the presence of highly acidic Bi,Sm,and Fe ions restrict the adsorption of CO_(2) on the cathode surface,resulting in excellent CO_(2) resistivity.This work provides valuable guidance for systematic design of efficient and durable catalysts for LT-SOFCs.
基金financially supported by the National Natural Science Foundation of China (52102323, 51972298)the China Postdoctoral Science Foundation (2021M703055)+1 种基金the National Key R&D Program of China (2021YFB4001401)the Key Research Program of the Chinese Academy of Sciences (ZDRWCN-2021-3-1)。
文摘Garnet-type Li_7La_(3)Zr_(2)O_(12)(LLZO) has high ionic conductivity and good compatibility with lithium metal.High-temperature processing has been proven an effective method to decrease the interface resistance of cathodeILLZO.However,its application is still hindered by the interlayer co-diffusion with the cathode and high sintering temperature(>1200℃).In this work,a new garnet-type composite solid-state electrolyte(SSE) Li_(6.54)La_(2.96)Ba_(0.04)Zr_(1.5)Nb_(0.5)O_(12)-LiCoO_(2)(LLBZNO-LCO) is firstly proposed to improve the chemical stability and electrochemical properties of garnet with high-temperature processing.Small doses of LCO(3%) can significantly decrease the LCOISSE interface resistance from 121.2 to 10.1 Ω cm~2,while the sintering temperature of garnet-type LLBZNO decreases from 1230 to 1000℃.The all-solid-state battery based on the sintered LLBZNO-LCO SSE exhibits excellent cycling stability.Our approach achieves an enhanced LCOISSE interface and an improved sintering activity of garnet SSE,which provides a new strategy for optimizing the comprehensive performance of garnet SSE.
基金supported by the National Key R&D Program of China(2021YFB4001401)the National Natural Science Foundation of China(51972298)。
文摘Stro ntium-doped lanthanum ferrite(LSF)is a potential ceramic cathode for direct CO_(2) electrolysis in solid oxide electrolysis cells(SOECs),but its application is limited by insufficient catalytic activity and stability in CO_(2)-containing atmospheres.Herein,a novel strategy is proposed to enhance the electrolytic performance as well as chemical stability,achieved by doping F into the O-site of the perovskite LSF.Doping F does not change the phase structure but reduces the cell volume and improves the chemical stability in a CO_(2)-rich atmosphere.Importantly,F doping favors oxygen vacancy formation,increases oxygen vacancy concentration,and enhances the CO_(2) adsorption capability.Meanwhile,doping with F greatly improves the kinetics of the CO_(2) reduction reaction.For example,kchem increases by 78%from3.49×10^(-4) cm s^(-1) to 6.24×10^(-4) cm s^(-1),and Dchem doubles from 4.68×10^(-5) cm^(2) s^(-1) to 9.45×10^(-5)cm^(2) s^(-1).Consequently,doping F significantly increases the electrochemical performance,such as reducing R_(p) by 52.2%from 0.226Ωcm^(2) to 0.108Ωcm^(2) at 800℃.As a result,the single cell with the Fcontaining cathode exhibits an extremely high current density of 2.58 A cm^(-2) at 800℃and 1.5 V,as well as excellent durability over 200 h for direct CO_(2) electrolysis in SOECs.
基金The Key-Area Research and Development Program of Guangdong Province(2022B0111130004)National Natural Science Foundation of China(52272257)Innovation Team of Jiangsu Province(JSSCTD202241)。
基金supported by the Natural Science Research Project of Anhui Province Education Department(No.2022AH050334)the Scientific Research Foundation of Anhui University of Technology for Talent Introduction(No.DT2200001211)the New Energy Electric Vehicles High-Voltage Components Inspection and Testing Public Service Platform。
文摘Mn-based layered oxides are among the most promising cathode materials for sodium-ion batteries owing to the advantages of abundance,environmenta friendliness,low cost and high specific capacity.P2 and O'3 are two representative structures of Mn-based layered oxides.However,the P2 structure containing insufficien Na generally exhibits low initial charge capacity,while O'3structure with sufficient Na delivers high initial charge capacity but poor cycle stability.This study prepared a multitude of Na_(x)MnO_(2)(x=0.7,0.8,0.9)cathode materials with varying P2/O'3 ratios and further investigated their electrochemical performances.The optimized Na_(0.8)MnO_(2) comprising 69.9 wt%O'3 and 30.1 wt%P2 phase,exhibited relatively balanced specific capacity,Coulombic efficiency and cycle stability.Specifically,it achieved a high specific capacity of 128.9 mAh·g^(-1) with an initia Coulombic efficiency of 98.2%in half-cell configuration The Na_(0.8)MnO_(2)//hard carbon full cell also achieved a high specific capacity of 126.7 mAh·g^(-1) with an initia Coulombic efficiency of 98.9%.Moreover,the capacity fading mechanism was revealed by combining in-situ and ex-situ X-ray diffraction.The findings of this study provide theoretical guidance for further modification design of Mnbased layered cathodes.
基金acknowledge the Autonomous Region Key Research Project(No.2022D02D31)the Graduate Education Innovation Project(No.XJ2022G046)。
文摘Promoting the oxygen reduction reaction(ORR)is critical for commercialization of intermediate-temperature solid oxide fuel cells(IT-SOFCs),where Sr_(2)Fe_(1.5)Mo_(0.5)O_(6)−δ(SFM)is a promising cathode by working as a mixed ionic and electronic conductor.In this work,doping of In^(3+)greatly increases the oxygen vacancy concentration and the content of adsorbed oxygen species in Sr_(2)Fe_(1.5)Mo_(0.5−x)InxO_(6−δ)(SFMInx),and thus effectively promotes the ORR performance.As a typical example,SFMIn_(0.1)reduces the polarization resistance(R_(p))from 0.089 to 0.046Ω∙cm^(2)at 800°C,which is superior to those doped with other metal elements.In addition,SFMIn0.1 increases the peak power density from 0.92 to 1.47 W∙cm^(−2)at 800°C with humidified H_(2)as the fuel,indicating that In3+doping at the Mo site can effectively improve the performance of SOFC cathode material.
文摘A terylene membrane which kept pH〉12 in cathode compartment was used to construct a divided cell with a carbon/polytetrafluoroethylene(C/PTFE) O2-fed cathode. The concentrations of hydrogen peroxide (H2O2) and hydroxyl radical (HO^-)in the catholyte were 8.3 mg/L and 2.15 μmol/L, respectivel.y, which were determined by permanganate titration, electron spin resonance (ESR) spectrum and the fluorescence spectra. ;The efficiency of the removal of phenol achieved 100% as a result of these two kinds of stronger oxidizer.
基金the National Natural Science Foundation of China(21673064 and 51902072)the Heilongjiang Touyan Team(HITTY-20190033)+2 种基金the Fundamental Research Funds for the Central Universities(HIT.NSRIF.2019040 and 2019041)the State Key Laboratory of Urban Water Resource and Environment(Harbin Institute of Technology)(2020 DX11)the Heilongjiang postdoctoral financial assistance(LBH-Z19055)。
文摘Traditional O3-type Li-rich layered materials are attractive with ultra-high specific capacities,but suffering from inherent problems of voltage hysteresis and poor cycle performance.As an alternative,O2-type materials show the potential to improve the oxygen redox reversibility and structural stability.However,their structure-performance relationship is still unclear.Here,we investigate the correlation between the Li component and dynamic chemical reversibility of O2-type Li-rich materials.By exploring the formation mechanism of a series of materials prepared by Na/Li exchange,we reveal that insufficient Li leads to an incomplete replacement,and the residual Na in the Li-layer would hinder the fast diffusion of Li^(+).Moreover,excessive Li induces the extraction of interlayer Li during the melting chemical reaction stage,resulting in a reduction in the valence of Mn,which leads to a severe Jahn-Teller effect.Structural detection confirms that the regulation of Li can improve the cycle stability of Li-rich materials and suppress the trend of voltage fading.The reversible phase evolution observed in in-situ X-ray diffraction confirms the excellent structural stability of the optimized material,which is conducive to capacity retention.This work highlights the significance of modulating dynamic electrochemical performance through the intrinsic structure.
文摘Microwave synthesis method was applied to the fast preparation of LiCoO2. The structure of the synthesized oxides was analyzed by using X-ray diffraction. Only single-phase LiCoO2 was obtained. Electrochemical behaviors of LiCoO2 were investigated by charge-discharge cycling properties in the voltage range of 3.004.35 V((vs Li).) The results show that the prepared LiCoO2 powders calcinated at 900 ℃ for 120 min exhibit an initial charge and discharge capacity of 168 and 162 mA·h·g-1 at 0.1C current rate, respectively, as compared to 159 and 154 (mA·h·g-1) of LiCoO2 synthesized by conventional means. In addition, more than 95% of the capacity is retained (even) after 10 cycles. But with the increase of calcinating time, its electrochemical properties deteriorate. Compared with the conventional method, the microwave heating method is simple, fast, and with high energy efficiency.
基金supported by the National Natural Science Foundation of China (22179077, 51774251)the Shanghai Science and Technology Commission’s “2020 Science and Technology Innovation Action Plan” (20511104003)+2 种基金the Natural Science Foundation in Shanghai (21ZR1424200)the Hebei Natural Science Foundation for Distinguished Young Scholars (B2017203313)the Scientific Research Foundation for the Returned Overseas Chinese Scholars (CG2014003002)。
文摘The Na^(+)/vacancy ordering can effectively affect the electrochemical behavior of P2-type cathode material.In this work we proposed an integrated strategy by attaining a high Na content,In^(3+) doping in conjunction with NaInO_(2) coating in the P2-Na_(0.75)Mn_(0.67)Ni_(0.33)O_(2) which can inhibit the sodium vacancy order,smooth the electrochemical curve,and enhance the structural stability and rate capability.A combination of X-ray diffraction analysis and DFT calculation indicate that the In(3+) ions in the Na layer serve as"pillars”to stabilize the layered structure,especially for high current density charging.The P2-Na_(0.75)Mn_(0.67)Ni_(0.33)In_(0.02)O_(2) with an impressive sodium content exhibits a remarkable reversible capacity of 109.6 mAh g^(-1),superior rate capability capacity of 79.8 mAh g^(-1)at 20 C,and 85%capacity retention after 100 cycles at 5 C.This work demonstrates an efficient approach for the comprehensive optimization of sodium ion cathode materials.